

본 자료는 주식회사 아이엠티 (이하 "회사")와 관련하여 기관투자자와 일반투자자들을 대상으로 실시하는 Presentation에서의 정보제공을 목적으로 작성되었으며 이의 반출, 복사 또는 타인에 대한 재배포는 금지됨을 알려드리는 바입니다.

본 자료의 열람은 위의 제한 사항의 준수에 대한 동의로 간주될 것이며 제한 사항에 대한 위반은 '자본시장과 금융투자업에 관한 법률'에 대한 위반에 해당될 수 있음을 유념해주시기 바랍니다. 또한, 본 자료의 활용으로 인해 발생하거나 발생할 수 있는 모든 손실에 대하여 '회사' 및 '회사'의 임직원과 주주, 자문역 및 기타 이해관계인들은 과실 및 기타의 모든 경우를 포함하여 그 어떠한 책임도 부담하지 않음을 알려드립니다.

본 자료에 포함된 '예측정보'는 개별 확인 절차를 거치지 않은 정보들입니다. 이는 과거가 아닌 미래의 사건과 관계된 일체의 사항을 포함하는 것 (별도 '예측 정보' 임을 표기하지 않았다 하더라도)으로 '회사' 및 산업의 향후 예상되는 변화 및 재무의 예상 실적을 의미하는 것입니다. 동 '예측정보' 는 많은 변수에 따라 영향을 받으며, 본질적으로 불확실성을 가지고 있으므로 실제 미래에 나타나는 결과는 '예측정보'에 기재되거나 암시된 내용과 중대한 차이가 발생할 수 있습니다.

본 자료는 어떠한 주식의 매입 또는 매도 등 매매의 권유를 구성하지 아니하며, 본 자료의 그 어느 부분도 어떠한 계약 및 약정 또는 투자 결정을 위한 기초 또는 근거가 될 수 없습니다. 또한 본 자료는 어떠한 경우에도 민형사상의 분쟁 및 다툼에 있어서 증거자료로 사용될 수 없음을 알려드립니다.

주식 매입 또는 매도 등 매매와 관련된 모든 투자 결정은 오직 금융감독원 전자공시시스템을 통해 제출한 신고서를 통해 제공되는 정보만을 바탕으로 내려져야 합니다.

1 IMT 핵심기술 & 3대 Vision

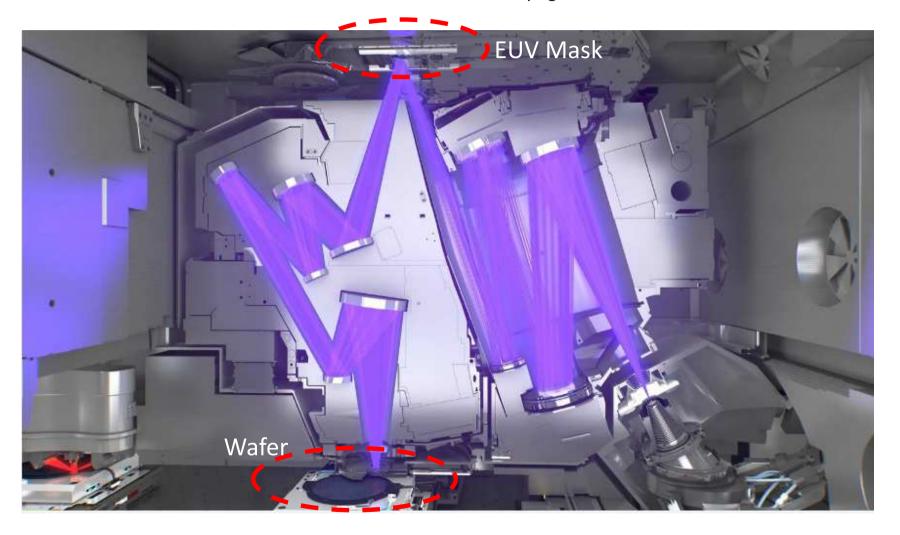
IMT 핵심기술의 지속적인 고도화 및 적용범위, 응용기술 개발 확대

건식세정기술

레이저응용기술

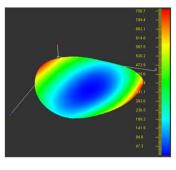
	CO2 세정기술	레이저 세정 기술	레이저 열처리기술	
상품화	Microjet™ (세계최초)	세정전용 레이저 고유모델	초정밀 레이저 열처리	
	• HBM 반도체 Post Dicing • HBM 용 Substrate	• Probe Card 세정 (Off-line)	• EUV Mask Baking 장비	
	M사 (+S사), H사	T사, Global 후공정 업체 다수	S사	
개발경	Hybrid Bonding 공정 (0.5um) Sticky particle cleaning (M, H, S사)	In-Line 세정 Multi Prober 내장형 (S사)	Application Shift → Wafer Warpage Control (H사, 기술혁신 기업 선정)	

2 IMT 3대 Vision: Laser 열처리 기술

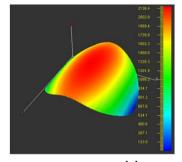

SK Hynix 기술혁신 기업 선정 (2025. 8~2028. 8)

2 IMT 3대 Vision: Hynix 기술혁신 기업 선정 배경

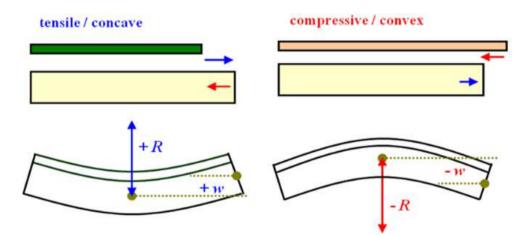
◆ EUV Mask Laser 열처리 기술 개발 실적 → Wafer Warpage Control 기술 세계 최초 개발



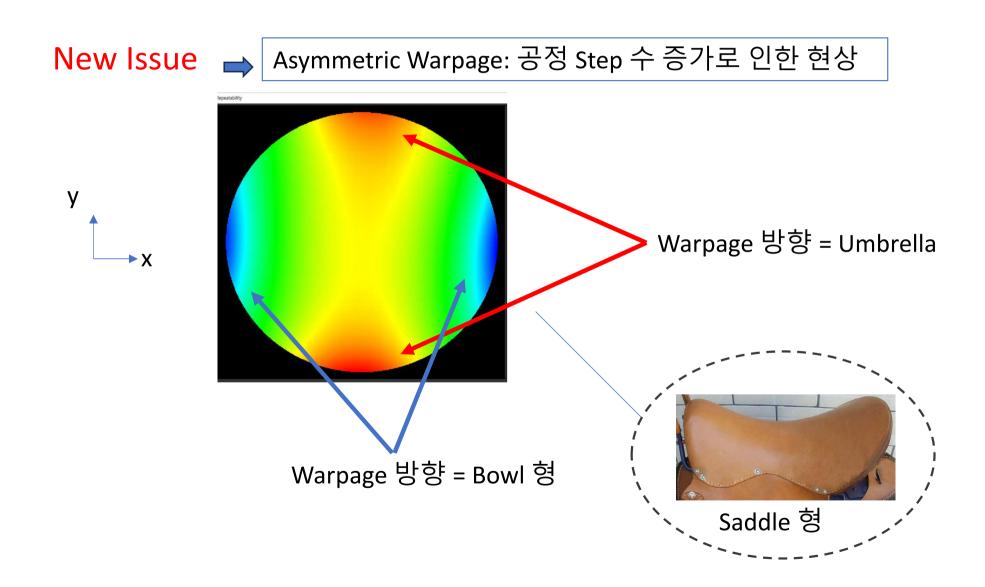
"아무리 비싼 노광 장비라도 Pattern을 프린팅할 Wafer 가 휘면 무용지물"


2 IMT 3대 Vision: Wafer Warpage Control

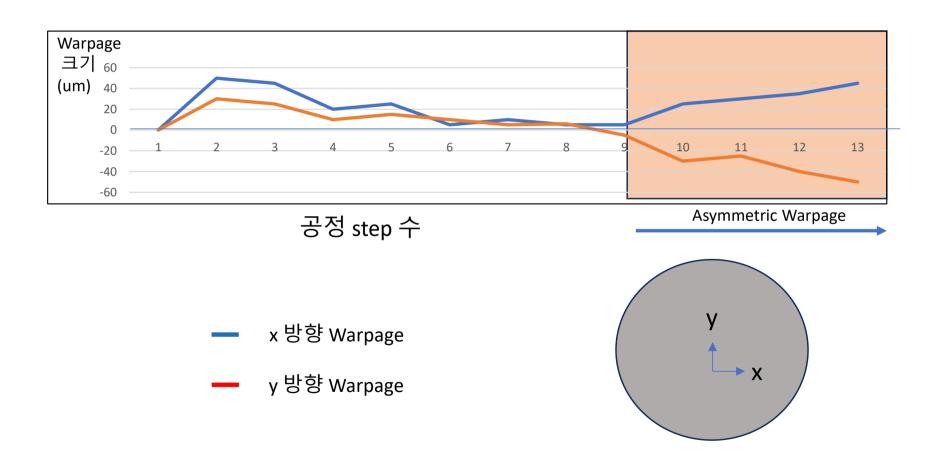
Wafer Warpage Issues


Bowl 형 Warpage

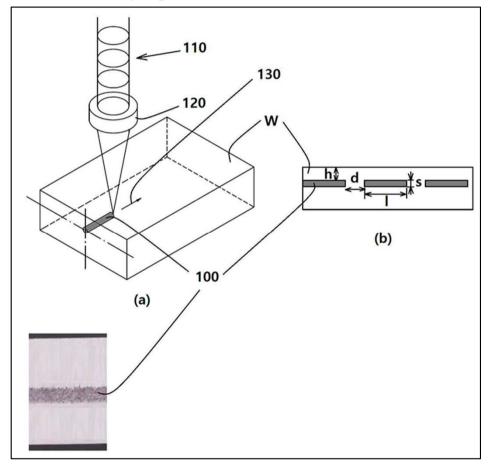
Umbrella 형 Warpage


현재 적용기술

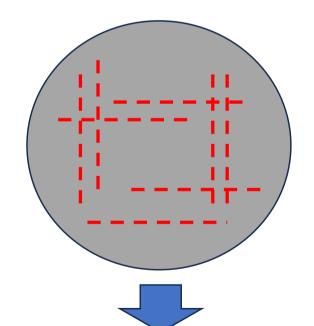
Counter Stress Film Coating by PECVD


2 IMT 3대 Vision: Wafer Warpage Control

2 IMT 3대 Vision: WWC 장비의 개발배경



2 IMT 3대 Vision: Wafer Warpage Control



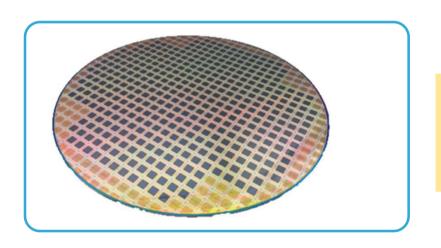
Wafer Warpage Control 기술 핵심 개념

IMT's Stealth Patterning 특허 (원천기술)

Wafer의 흰 위치와 크기에 따라 미리 학습된 Laser Stealth Pattern을 Engraving 하여 Wafer를 Flat 하게 펴 주는 세계 최초 기술 → Hynix와 공동 개발

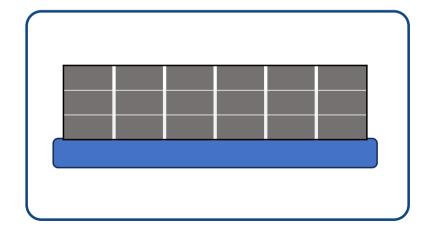
AI 활용한 Recipe 자동 생성

2 IMT 3대 Vision: Wafer Warpage Control System


WWC - THOR Development Roadmap

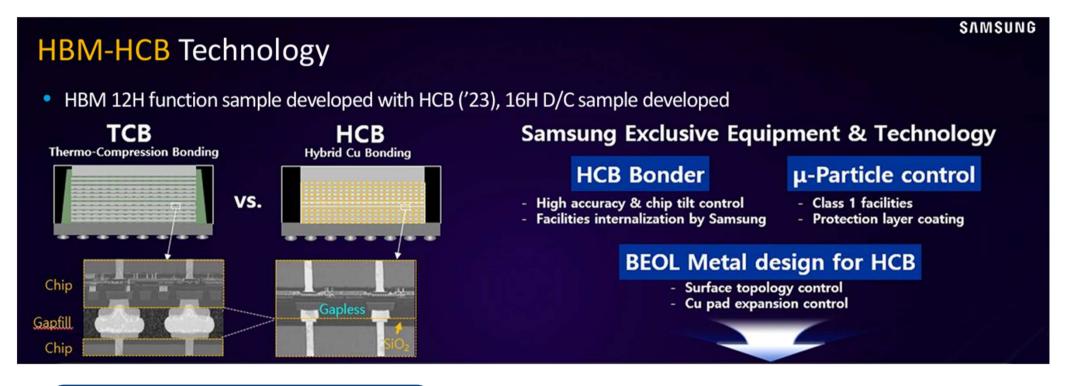
	2025	2026	2027	2028	2029
Model Name	THOR300	THOR500 / THOR300H	THOR700	THOR800 / THOR500H	THOR1000
Key Feature	1세대 양산장비Simulation Model 개발고속 가공 1000mm/s	 2세대 양산장비 Throughput Up: 2 Stages 300H: Warp 검사 모듈 결합 Hybrid model 	 3세대 양산장비 Throughput 극대화: 1 Laser Dual beam 적 용 	3세대 Upgrade500H: 고속 가공 모듈 적용 검사 Hybrid model	■ 4세대 양산장비 ■ 4 Stage model
Performance	■ 최대변형량: 500um ■ Throughput: 15wph (100um 기준)	■ 최대변형량: 1000um ■ Throughput: 30wph (100um 기준)	■ 최대변형량: 1500um ■ Throughput: 50wph (100um 기준)	■ 최대변형량: 2000um ■ Throughput: 60wph (100um 기준)	최대변형량: 2000umThroughput: 120wph (100um 기준)
System	• 300: 1Laser & 1Stage	500: 2Lasers & 2Stages300H: 가공모듈 & 검사모 듈	700: 2Lasers & 2Stages & 4Beams	2Laser & 2Stage & 4Beam H: 1Laser & 2Beam 장착	4Laser & 4Stage & 8Beam
	THOR300 THOR300H TR Camera				1 Laser 2 Beams Processing

3 IMT 3대 Vision – HBM 용 CO2 Cleaning 기술



HBM 제조 공정에서 발생하는 Particle issue

1) Post Dicing 공정


- ◆ Dicing 후 발생하는 Particle 세정
- ◆ M사에서 최초 적용 (성능 입증), Plasma Dicing?
- ◆ S사 Demo 합의 (준비 작업 중)



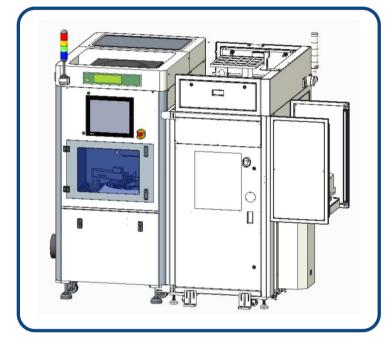
2) Chip Stacking 공정

- ◆ Chip 과 Chip 사이에 Particle 제거
- ◆ Hybrid Bonding 에서 유력한 Solution (습식 불가)
- ◆ Memory 3사 모두 테스트 중 (0.5 um 이상 99% 제거 목표)

참고자료 (Hybrid Cu Bonding 에서 Particle이 Issue인 이유)

Chip Stack 간 간극 때문에 Chip stacking 공정에서 습식 대신 건식세정이 Solution


3 IMT 3대 Vision: CO2 Wafer Cleaner for HBM

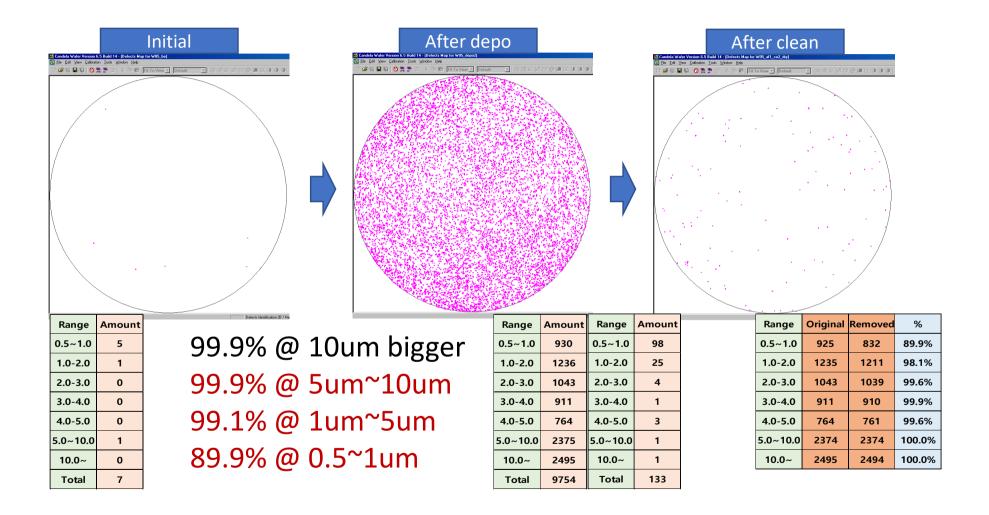

2 Chamber

1 Chamber

GEN 2

Particle Size: 0.5 um, Sticky Target: HBM4 (HBM 3사 공통)

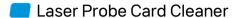
3um

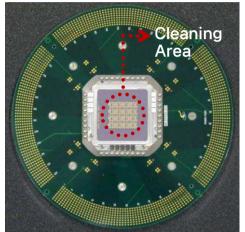

3um

3, 4호기

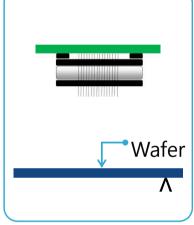
5~10 호기

3 IMT 3대 Vision: Gen2 Cleaning Performance

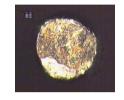

Performance is better than current wet cleaners

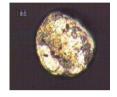

<참고자료>

SAMSUNG **HBM** Roadmap Increased needs for HPC/AI applications call for high-stack, high-performance HBM 1) HBM3 12H world first mass production ('23.7~) 2) HBM4 16H HCB technology in development 3) HBM4 customized HBM in development 2023 2024 2025~ **HBM Product НВМЗЕ** HBM4 **НВМ3 HBM Thickness** 720um 720um 775um 8/12H Stack # 12/16H 8/12H Architecture 3) Customized HBM 1) 12H-Stack 16H-Stack 8H-Stack Structure 0000000 00000000 00000000 00000000 1-Buffer, 2-HBM Tower TCB/ 2)HCB Logic Buffer **TCB** 9um/7.3um Tech. 7.3um <7.0um **Joint** Gap **HCB Gapless**

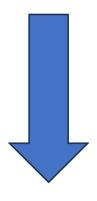

4 IMT 3대 Vision: Probe-card Laser In-line Cleaner (PLI)

- Probe Card Cleaning Area -

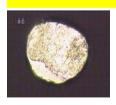



- Probe Pin 구조도 -

✔ Pin과 Pin 사이의 간격(Pitch) 지속적 감소 ✓ Pin 숫자의 지속적 증대


테스트 수율 증대

Beore cleaning



Probe-card Laser Off-line Cleaner

After cleaning

4 IMT 3대 Vision: Probe-card Laser In-line Cleaner (PLI)

모든 Prober 장비에 IMT Laser Cleaner 장착 > 장비 Down Time 감소, 수율 향상

Integrate

IMT Laser Cleaner (PLI-3000 Model)

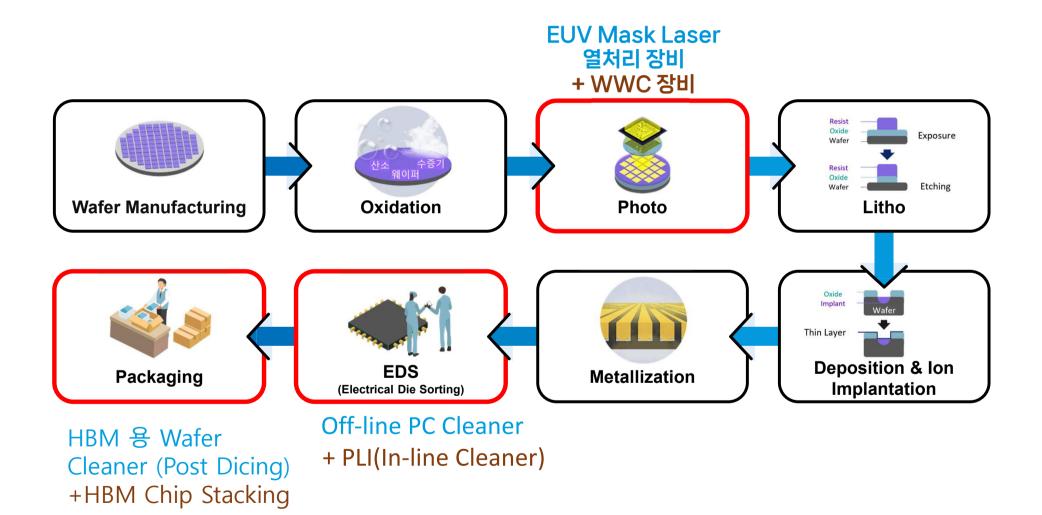
TEL-IMT 공동개발

4 IMT 3대 Vision: Probe-card Laser In-line Cleaner (PLI)

Multi test prober용 Probe-card의 Inline 레이저 세정 모듈 개발

→ Prober 장비 내에서 레이저 세정 기능을 구현, 다운타임 감소, 생산성 증가

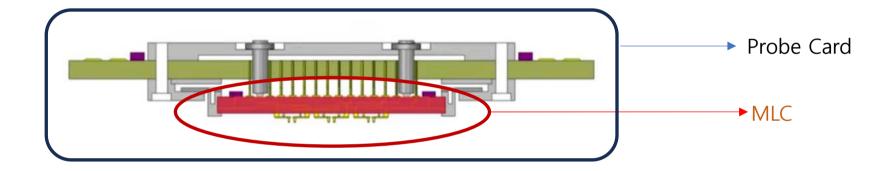
Group Prober


TEL -IMT 공동으로 PLI 개발 완료

- → 양산 적용 Holding
- → 이유는? ROI Issue
- → 1 Prober to 1 Cleaner

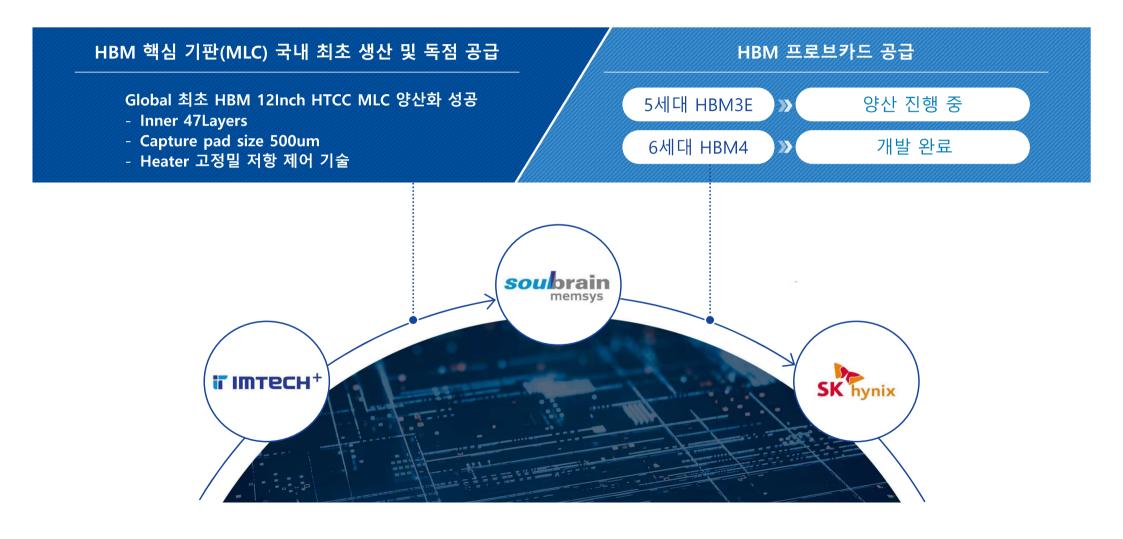
프로브카드 세정 기능 내장 장비 다운 타임의 대폭 감소 생산성 향상, 가동 시간 증가

5 IMT 3대 Vision: 반도체 8대 공정에서의 Position



<u>6</u> New Biz: Probe-card 용 Multi Layer Ceramic (MLC)

IMTech+ : Probe Card 용 MLC (Multi-Layer-Ceramic) 제조회사



- HBM 용 Probe Card: (H사 向) MLC Qual 통과 (국내유일, 세계 3개 기업)
- LTCC(800 °C 저온소결), 대비 HTCC (1600 °C 고온소결) → 고성능
- 고온 소결 세라믹 기판 수요 증대 → Chip 의 첨단화, Pin 수 증가
- 12인치 세라믹 기판에 7만~10만 개 관통 전극 (Via-Hole)
- HBM 용 MLC 비중 증대 및 생산 Capa 증설 추진 중

6 HTCC(고온소성) MLC 기판

국내 최초 HBM3E 프로브카드용 핵심 부품 상용화 및 납품

Summary

