투자자 레포트

태성 기업설명회

복합동박·유리기판·FC-BGA·SoCAMM·ESS

3축 성장 엔진으로 여는 차세대 패키징/배터리 장비 리더십

복합동박 배터리 소재 혁신

유리기판 차세대 반도체 패키징

FC-BGA AI/HPC 기판 솔루션

SoCAMM AI 메모리 모듈

ESS 에너지 저장 시스템

Executive Summary — 3대 성장 축

복합동박

1,400mm 장폭·양산 수율 98% 수준, ESS/LFP 슈퍼사이클과 맞물린 고성장 TAM Cu 사용량 50% 절감 + 에너지 밀도 향상 + 덴드라이트 억제 → 원가·안전성 동시 개선

유리기판

AI/HPC 수요↑, Glass Core/Interposer 채택 가속; 태성은 TGV 에칭 등 핵심 공정 장비 보유 유전율↓+워피지↓+미세회로+I/O 밀도↑→AMD·NVIDIA 등 글로벌 기업 도입 검토

FC-BGA & SoCAMM

고부가 기판 수요 확대; 기존 레퍼런스 \rightarrow 유리기판 \cdot 메모리 모듈로 크로스셀 NVIDIA SoCAMM 모듈 확산 + FC-BGA 성장 \rightarrow 태성 미세 에칭/도금 장비 수요 확대

"기술 리스크는 상당 부분 해소, 남은 것은 고객 투자 타이밍과 가격 협상"

Executive Summary 태성 IR

투자 하이라이트

구조적 성장

복합동박·유리기판·FC-BGA 모두 AI/ESS의 장기 성장 축 CAGR: 복합동박 40%+, 유리기판 21.5%, FC-BGA 10.4% ('24-'33)

기술 차별화

대장폭·고수율 복합동박, 브로큰 방지 유리공정, 미세 에칭/도금 역량 복합동박 1,400mm 장폭·수율 98%, 유리기판 공정 24단계 중 18단계 커버

레퍼런스 & 고객

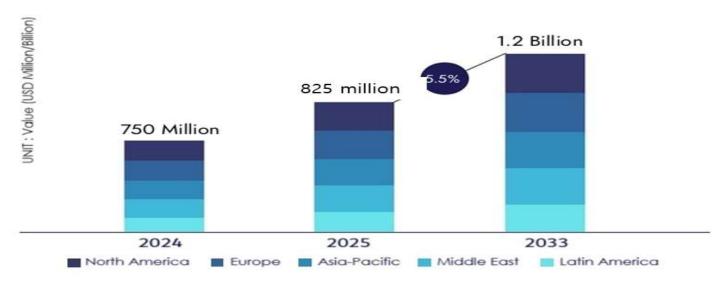
JWMT 등 데모·초도 공급, 국내외 다수 NDA 국내 동박 빅3/중국 배터리 C사 검토 중, 유리기판 국내외 대형 기판사 협상

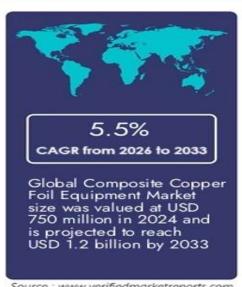
비즈니스 모델

장비 + 파일럿/임대공장 + 선택적 소재 참여 + IP/위약금 보호 카피 발생 시 억단위 위약금 조항, 장비 판매와 소재 사업 병행

IR 포인트

중국 자회사/글로벌 밸류체인 확장에 따른 매출 인식 구조 한국 R&D·기술 + 중국 생산·매출 → 장기적 레버리지 효과


복합동박 TAM & 성장 전망


복합동박 시장은 ESS·EV·3C 수요에 힘입어 2024-2033년 40%+ CAGR의 고성장 예상

Global Composite Copper Foil Equipment Market Size and Scope

VERIFIED MARKET REPORTS

Source: www.verifiedmarketreports.com

글로벌 복합동박

2024년 \$225M → 2033년 \$9.2B CAGR 40%+ (추정치 범위 존재)

중국 시장 성장

2023년 92.8억 위안 → 2025년 291.5억 위안 3배+성장 (2년 내)

주요 성장 동인

- ESS/LFP 배터리 확산
- Cu 가격/공급 리스크 회피

시장 분석

태성 IR

복합동박 구조와 기술적 우위

Cu-폴리머-Cu 샌드위치 구조로 경량화·원가절감·안전성 개선

복합동박 구조(Composite Copper Foil)

Cu 도금층 플리머 코어 (PET / PP) Cu 도금층

총 두게: ~1μm

~1µm

차이점 :

·구리 사용량 ~50%감소

·무게 ~ 50% 경량화

· 인장강도 향상

~4.5µm

~1um

기존 동박 구조

플리머 코어 (PET / PP)

6.5~8µm

총 두게: 6.5 ~8µm

구조적 장점

구리 사용량 ~50% 절감

원자재 비용 절감 + Cu 가격 변동 리스크 완화

무게 ~50% 경량화

같은 중량으로 더 많은 활물질 적용 → 에너지 밀도 향상

인장강도 향상 ⋅ 내파손성↑

찢김/핀홀 발생 감소, 코팅·캘린더링 공정 수율 개선

기술적 과제

접착력 · 열 수축 차이

필름·Cu 계면 접착력, 롤투롤 공정에서 주름·찢김·정렬 불량 리스크

공정 복잡성

다단계 도금 공정에서 두께 균일도, 핀홀 제어, 수율 확보 난이도↑

태성의 해결방안

장폭 1,400mm \times 균일도 제어 \times 핀홀 최소화 \rightarrow 양산 수율 98% 달성

기술 분석 태성 IR

복합동박 공정 플로우 & 핵심 파라미터 상세

고효율 롤투롤 수전해 도금 공정과 양산 기술 핵심 지표

핵심 파라미터 & 경쟁사 비교

파라미터	요구 수준	태성 장비 성능	경쟁사 한계
두께	총 6.5μm	extstyle extstyle 4.5 μm 필름 + 양면 각 1 μm $ extstyle extstyl$	⚠ 균일도 저하, 두께 편차 발생
장폭	최대 1,400mm	☑ 최대 1,400mm 장폭 구현	⚠ 크래핑 장치 사용, 장폭 짧음
균일도	土 수백 nm	▼ 폭・길이 방향 균일도 안정적 제어	⚠ 롤투롤 공정에서 불균일 발생
천공(핀홀)	제로에 근접	☑ 특수 도금 공정으로 핀홀 최소화	⚠ 핀홀 다수 발생, ESS 안전성 우려
수율	최소 80% 이상	양산 수율 98% 달성	D사 30% 미만 (업계 추정)

태성 장비 세부 스펙

장비 규모: 길이 27m × 폭 4.6m × 높이 1.8m

공정 구성: 6단 도금 + 건조 공정

생산 능력: 월 최대 4대 생산, 대당 약 400만 달러

기술적 차별성

업계 유일 대면적 장폭 × 고수율 기술 검증

1,400mm 장폭에서 98% 수율 달성, 경쟁사 대비 3배 이상 우위

글로벌 특허망 구축 완료

복합동박용 롤투롤 도금장비 관련 핵심 기술 특허 출원

시장 분석 태성 IR

ESS 슈퍼사이클과 복합동박의 필연성

ESS 시장의 구조적 성장과 LFP 배터리 보급 확산이 복합동박 수요를 견인

ESS 시장 성장

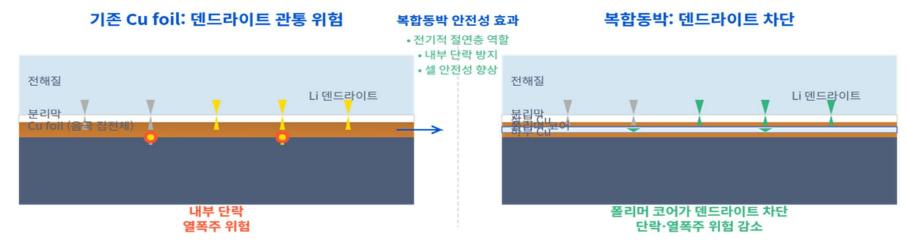
2024년 \$10.8B → 2035년 \$44-56B CAGR 15-27% (10년+지속 전망)

ESS 용도에서 LFP 점유율 80-96%

Cu 공급 리스크

IEA: 2035년 구리 공급 30% 부족 전망 → 복합동박: Cu 절감 + 안전성 개선 효과

복합동박 애플리케이션 맵


다양한 영역에서 복합동박의 무게 감소 · 안전성 · 원가 이점 활용

메시지: 복합동박의 TAM은 셀 출하량이 증가하는 모든 영역(전기차+ESS+3C)과 직결되어 있으며, ESS/LFP 확산이 가속될수록 구조적으로 수요가 커지는 시장입니다.

안전성 — 덴드라이트 억제 메커니즘

복합동박의 폴리머 코어가 내부 단락 · 열폭주 리스크 감소

기존 Cu foil의 리스크

덴드라이트 관통 위험

전해질에서 성장한 Li 덴드라이트가 Cu층을 직접 관통해 내부 단락 유발

열폭주 가능성

단락 발생 시 급격한 발열·화재 위험으로 배터리 안전성 저하

기계적 취약성

반복적 충방전·기계적 스트레스에 취약, 찢김·변형 가능성

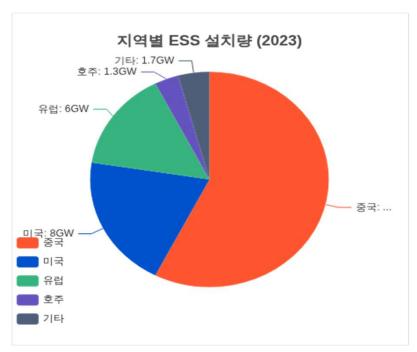
복합동박의 안전성 향상

절연층 역할

중앙 폴리머 필름이 전기적 절연장벽으로 작용해 덴드라이트 성장 차단

열·기계적 안정성

필름 코어로 구조 강화, 기계적 스트레스와 반복 충·방전에 내성 증가


ESS 안전 규제 대응

UL9540A, NFPA 855 등 엄격한 ESS 안전 규제에 대한 적합성 향상

ESS 시장 글로벌 확대와 지역별 동인

글로벌 ESS 시장은 2024-2035년 15~27% CAGR로 성장, 지역별로 뚜렷한 정책/기술 동인 존재

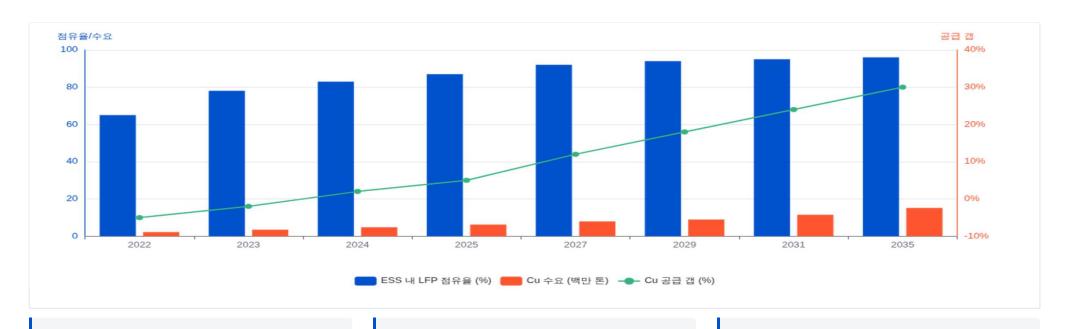
중국 정책 동인

LFP 비중 96% 이상 국내 ESS 설치 보급 확대, LFP 대량 생산

유럽 정책 동인

2030년까지 50GW+ 확대 800억 유로 투자 계획, 재생에너지 연계

미국 정책 동인


IRA 정책 + 탈중국화 비(非)중국 ESS 공급망 구축, 현지화 가속

ESS 시장 분석

태성 IR

LFP 배터리 주도권과 구리 공급 부족 전망

ESS 시장에서 LFP 배터리 점유율 급증과 IEA 경고 - 2035년 구리 수요-공급 갭 30%

ESS용 LFP 점유율

BESS 내 LFP 비중 80~96% 중국 ESS 신규 설비의 96% 이상이 LFP

구리 수급 경고

IEA: 2035년 구리 공급 30% 부족 2029년까지 에너지저장용 Cu 900만 톤


복합동박 전략적 가치

Cu 50% 절감 → 공급 리스크 완화 비중국 공급망 + 원가경쟁력 + 안전성

시장 분석 태성 IR

ESS 원가 구조와 복합동박의 경제성

LFP 셀 원가 구조와 복합동박 적용 시 원가 절감 효과 분석

LFP 셀 원가 구조

재료비 비중: 37~42%

전체 셀 원가 중 재료비가 차지하는 비중

Cu·Al 집전체: 5~12%

전체 셀 원가 중 집전체가 차지하는 비중 (Cu foil 약 5%)

Cu 사용량: 0.4~0.83 kg/kWh

두께·화학계에 따라 달라지는 kWh당 구리 사용량

복합동박 적용 효과

셀 원가 2.5~5% 절감

Cu 사용량 50% 감소 → 직접적 재료비 절감

랙당 용량 증가

경량화로 동일 공간·무게 내 더 많은 활물질 적용 가능

프로젝트 IRR 개선

BOS·토지비 효율 개선으로 ESS 프로젝트 경제성 향상

원가 분석

태성 IR

ESS 안전 규제와 복합동박의 안전성 우위

엄격한 안전 규제

UL9540A, NFPA 855 등 ESS 화재·폭발 시험 요건이 극도로 엄격 대형 ESS 화재 사례 이후, 안전성은 ESS 프로젝트의 최우선 고려사항

덴드라이트 억제 메커니즘

폴리머 코어가 전기적 절연 장벽 역할 → 덴드라이트 관통·내부 단락 리스크 감소 리튬 이온이 성장하여 반대 전극으로 관통하는 현상을 구조적으로 차단

기계적 안정성 향상

인장강도 \uparrow , 핀홀/찢김 감소 \rightarrow 장주기 성능에 유리 충· 방전 사이클 및 캘린더링 공정에서 물리적 손상 감소, 내구성 개선

사업적 안전 프리미엄

안전성 향상은 프로젝트 파이낸싱·보험료 측면에서 실질적 가치 동일 kWh 기준 더 안전한 셀 제공 → 프로젝트 리스크 프리미엄 감소 효과

ESS 안전 규제와 복합동박의 안전성 우위 태성 IR

ESS × 복합동박 TAM 확대 시나리오

ESS 수요 확대에 따른 구리 필요량과 복합동박 적용 시 절감 효과

ESS × 복합동박 태성 IR

태성 복합동박 장비 차별화

대면적 장폭

최대 1,400mm급 대면적 롤투롤 구현 EV/ESS용 대규모 양산에 적합한 생산성 확보

고수율 양산

양산 수율 98% 수준 (언론/업계 인터뷰 기준) 경쟁사 대비 월등한 수율 → 원가 경쟁력 확보 가능

균일도 및 핀홀 제어

대면적에서도 균일한 도금층 형성 및 핀홀 최소화 정밀 공정 제어 기술로 품질 안정성 확보

글로벌 특허망

복합동박 장비 관련 글로벌 특허망 구축 국내외 특허 포트폴리오로 기술 독점성 확보

양산 역량

월 4대 수준 장비 생산 가능, 대당 약 400만 달러 검증된 양산 설비 레퍼런스 보유

경쟁사 한계 vs 태성 우위

일부 경쟁사 - 낮은 수율

업계 추정 기준 수율 30% 미만으로 알려짐 투자 회수 기간 장기화, 경제성 확보 어려움

🕟 태성 - 고수율 달성

양산 수율 98% 수준 검증 완료 (언론/업계 인터뷰 기준) 실질적인 구리 사용량 및 원가 절감 효과 구현

경쟁사 - 장폭 및 공정 한계

상대적으로 짧은 장폭과 크래핑 공정 리스크 존재 화재·불량 발생 빈도 높고 대면적 생산 어려움

태성 - 대장폭 구현

1,400mm급 대면적 롤투롤 구현 (배터리/ESS 양산 필수) 공정 안정성 확보, 효율적 양산 체제 구축

경쟁사 - 품질 제어 어려움

균일도·핀홀·두께 제어 이슈 심각 (업계 인터뷰) 양산 라인 적용 시 수율·품질·안전성 리스크

태성 - 공정 제어력

대면적 균일도·핀홀 최소화 공정 설계 완료 양산 환경에서 검증된 유일한 장비 기술력

● 시사점: 복합동박 초기 투자 결정 시 기술·수율 리스크 회피를 위한 검증된 선택지 필요

경쟁사 한계 vs 태성 우위 태성 IR

NDA·임대공장·IP 보호 — 비즈니스 모델

NDA 네트워크

국내 동박 빅3/글로벌 배터리·소재사와 다수 PoC 중국 C사, 한국 주요 배터리/소재 업체, 해외 기판사 등

임대공장 운영

샘플/수율 검증 → 초기 물량 대응 → 양산 전환 로드맵 한국 R&D/파일럿 라인 + 중국 현지 임대공장 운영 → 고객 리스크 최소화

IP 보호 체계

특허망 + 카피 발생 시 대규모 위약금 조건 협상 기술복제 발생 시 1억 5,000만 달러 배상 조항 (협상 중)

양산 이행 & 수익화

장비 공급 + 고객 양산 파트너십 + 서비스/소재 수익 장비 1대당 약 400만 달러, 월 4대 생산 가능 (언론 보도 기준)

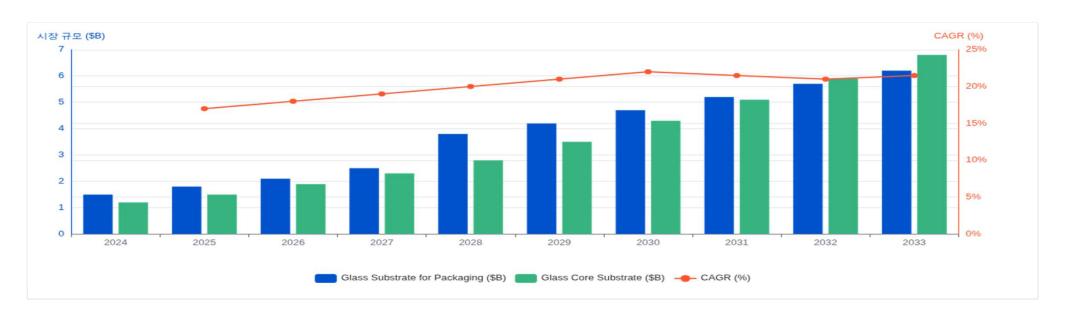
수익 모델 통합

장비 사업

- ✔ 복합동박/유리기판 장비 판매
- ✔ 설치 및 기술이전/교육 서비스
- ✔ 유지보수 및 부품 공급

파일럿/임대공장

- ✔ 초기 샘플 생산 및 수율 검증
- ✓ 임대공장 운영 수익
- ✓ 공정 레시피 및 노하우 제공


선택적 소재 참여

- ✓ 고객 니즈별 맞춤형 소재 비즈니스
- ✔ 장비 판매에 제약없는 방향으로 운영
- ✓ 초기 고객 공급 → 고객 자체 생산 전환

비즈니스 모델 태성 IR

유리기판 TAM & AI/HPC 성장 동인

AI·HPC 패키징 수요 증가로 유리기판 시장은 2024-2033년 CAGR 15~22% 고성장 예상

Glass Substrate for Packaging

2024년 \$1.5B → 2028년 \$3.8B CAGR 약 15-17% (AI 패키징 수요 견인)

Glass Core Substrate

2024년 \$1.2B → 2033년 \$6.8B CAGR 약 21.5% (2.5D/고성능 패키지 확대)

주요 성장 동인

- AI 가속기·HBM 수요 급증
- 대면적·고I/O·전력효율 니즈

시장 분석 태성 IR

왜 유리기판인가 — 기술적 필연성

전기적 우위

낮은 유전율/손실 → 전력 소모 및 신호 지연 감소 유기기판 대비 전기적 손실 최소화로 고주파 성능 확보, AI 가속기 전력효율 향상

기계적 안정성

워피지 \downarrow , 치수 안정성 ↑ → 대면적 패널에서도 우수한 평탄도 유지 열팽창계수(CTE)가 실리콘과 유사해 큰 패키지에서도 정렬 정확도 보장

초고밀도 집적

 $L/S \le 2 \mu m$, $10,000 \sim 50,000$ I/O 구현 가능 대형 AI 가속기, HBM 스택, CPU/GPU 칩렛 연결에 필수적인 고밀도 배선 실현

코스트 & 사이즈 효율

Si 인터포저 대비 대형화 용이 & 비용 효율성 우수 웨이퍼 크기 제약 없이 패널 레벨 대면적 생산으로 경제성 확보, 칩 면적 대비 패키지 비율 최적화

유리기판 기술적 필연성 태성 IR

패키징 구조 진화와 유리기판 인입

반도체 패키징 혁신: FC-BGA에서 Glass Core/Interposer로의 전환

차세대 AI 가속기 패키징 전망

AMD, NVIDIA 등 글로벌 반도체 기업들이 Glass Core/Interposer 채택 가속화 중. 2025-26년부터 대규모 도입 본격화 예상.

반도체 패키징 기술 트렌드 태성 IR

유리기판 공정 24단계 & 태성 커버리지 18단계

○ 태성 장비 커버리지(18단계)

타사 장비 영역(6단계)

준비 및 전처리 (1-6)

- 1. 원판 유리 준비
- 2. 유리 세정
- 3. 표면 활성화
- 4. 시드 중착(Cu/Ti)
- 5. 포토 레지스트 도포
- 6. 노광 현상

구리 패턴 형성 (7-10)

- 7. Cu 패턴 도금
- 8. 레지스트 박리
- 9. Cu/Ti 에칭
- 10.세정/건조

절연층 및 비아 형성 (11-16)

- 11. 절연충 형성
- 12. TGV드릴링 타사 장비 영역
- 13. 비아형성
- 14. 비아도금
- 15. 재세정
- 16. 후면 전처리

다중층 구조 형성 (17-20)

- 17. 후면 패턴 형성
- 18. CMP 공정 타사 장비 영역
- 19. 추가층 형성
- 20. 중간 검사

완성 및 검사 (21-24)

- 21. 표면 처리
- 22. 최종 클리닝
- 23. 전기적 검사 타사 측정장비 영역
- 24. 최종 치수검사

태성 기술 차별화 포인트

- ✓ 브로큰 방지 고급 메커니즘

 비접촉식 핸들링, 탄성 지그로 깨짐 방지
- ✔ HF/알칼리 양방향 에칭 대응
 미세 테이퍼 각도 및 측벽 거칠기 최소화
- ✔ 원스톱 솔루션 제공24단계 중 18단계 커버, 전/후처리 통합 공정

유리기판 공정 태성 IR

태성 유리기판 장비 기술력

브로큰 방지 기술

깨지기 쉬운 유리를 OLED 공정 노하우가 접목된 비접촉 핸들링 방식 적용 특수 탄성 지그 설계로 유리 접촉면 최소화, 기판 처짐·국부 응력 제어, 균열 발생 모니터링

HF/알칼리 양방향 에칭 대응

불산(HF)과 알칼리 양쪽 에칭 공정에 모두 대응하는 내화학성 설계 TGV 가공 시 매우 작은 테이퍼 각도와 낮은 측벽 거칠기 구현, 고정밀 웨이퍼급 균일도

클린 설계 및 미립자 관리

TGV 유리기판의 수많은 미세 관통홀에서 먼지 · 미립자 제어를 위한 특수 설계 약품 드나드는 통로 최소화, 전공정 반도체 수준의 클린 환경 구현

정밀 두께 제어 기술

브로큰 두께 0.1mm 수준까지 컨트롤 가능한 초정밀 핸들링 대량 생산 환경에서도 일관된 품질 유지, 유리 특성에 최적화된 설계 방식

태성 유리기판 장비 기술력 태성 IR

고객/NDA/데모·샘플 평가 현황

NDA 체결

국내외 주요 고객사와 다수의 비밀유지협약 체결

유리기판: 국내 대기업 2곳, 해외 대형 기판사

복합동박: 중국 C사(최대 배터리 제조사), 국내 동박 빅3

데모·샘플 평가

장비 데모 진행 및 샘플 평가 단계

유리기판: 데모 설비·샘플 평가 진행 중

복합동박: 양산 수율 검증 진행 중

파일럿·초도물량

초기 장비 공급 및 파일럿 단계

유리기판: JWMT에 TGV 알칼리 에칭기 공급 완료, 추가 설비 협의

복합동박: 국내외 임대공장 활용 초기 물량 대응 준비

양산 계약·납품

대규모 장비 납품 및 양산 진입

유리기판: 가격 협상 마친 상태, 납기·라인 셋업 시기 조율 중 복합동박: 장비 납품 계약 협상 중 (설비 1대 약 400만 달러 수준)

주요 고객 현황

국내 JWMT

- ✔ TGV 알칼리 에칭기 초도 공급 완료
- ✓ 추가 설비 협의 진행 중
- ✔ 유리기판 파운드리 비즈니스 협력

국내 대기업 2개사

- ✓ 가격 협상 마친 상태
- ✓ 납기·라인 셋업 시기 조율 중
- ✔ 유리기판 양산 로드맵 협의

해외 글로벌 기판/소재사

- ✓ 내년 초 목표 장비 공급 협상 막바지
- ✔ 유리기판/복합동박 양산 설비 논의
- ✓ 주요 AI/HPC 고객 레퍼런스 보유

Glass Substrate 시장 포지셔닝

공급자 제한성

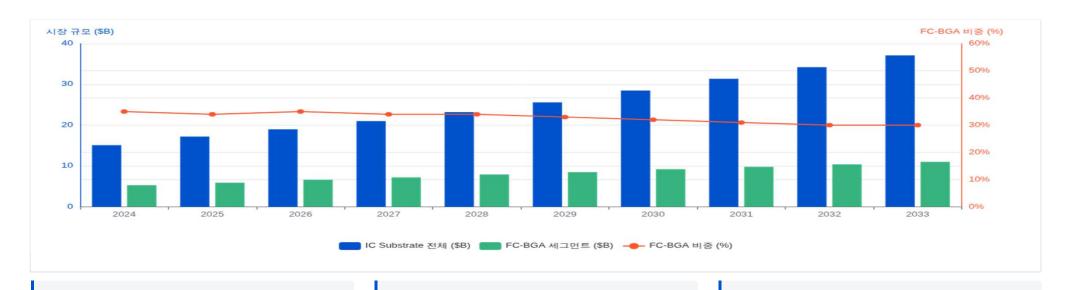
소수 장비사만 대면적 유리 공정 대응 가능 대부분 장비사가 유리 기판의 브로큰(깨짐) 제어, HF/알칼리 동시 대응에 어려움을 겪음

공정 커버리지

태성: 24단계 중 18단계 커버 → 원스톱 솔루션 지위 TGV·CMP·측정 외 모든 핵심 공정 장비 제공 가능, 고객에게 턴키 솔루션 제공

고객군 일치성

FC-BGA 고객 = 유리기판 고객 → 크로스셀링 용이 기존 고객이 동일 공정 철학으로 유리기판으로 전환 시 태성 장비 선호도 높음


시장 모멘텀

AMD/NVIDIA/Absolics 등 생태계 가속화 진행 중 주요 반도체 기업들의 글래스 기판 특허 출원 및 제품 로드맵 추진, 2025-26년 상용화 목표

Glass Substrate 시장 포지셔닝 태성 IR

IC Substrate & FC-BGA 시장 개요

AI/HPC 수요에 힘입어 IC 서브스트레이트는 두 자릿수 성장, FC-BGA는 고부가 패키지의 중심축

IC Substrate 전체

2024년 \$15.1B → 2033년 \$37.1B CAGR 10.5%의 안정적 성장

Advanced IC Substrate

2028년 약 \$29B 전망 (Yole) AI/HPC/5G가 핵심 수요처

FC-BGA 세그먼트

2024년 \$5.3B → 2032년 \$10.4B Advanced IC의 약 45% 비중 차지

시장 분석 태성 IR

SoCAMM & AI 메모리 혁신

NVIDIA 주도의 차세대 메모리 모듈이 기판 시장에 미치는 영향

SoCAMM 특징

Small Outline Compression Attached Memory Module

고성능 AI 시스템용 차세대 메모리 모듈

성능 향상

기존 RDIMM 대비 대역폭 2.5배 향상

전력 효율

기존 대비 전력소모 1/3 수준으로 감소

특수 PCB 설계

694개 I/O 포트, LPDDR5X 메모리 직접 기판 실장 방식

시장 영향

NVIDIA 도입 계획

2025년 60~80만 모듈 도입 예정 (업계 보도)

기판 산업 영향

고층·고밀도 PCB, 미세 배선 수요 증가 \rightarrow 정밀 에칭/도금 장비 수요 \uparrow

AI 가속기 전환

SoCAMM → SoCAMM2 진화, HBM과 상호보완적 역할

태성 비즈니스 기회

미세 에칭/도금 역량, 기존 FC-BGA 레퍼런스 \rightarrow SoCAMM 생산 장비 기회

태성 FC-BGA 레퍼런스 → 시너지

기존 강점

FC-BGA 에칭/도금 장비 레퍼런스 다수 국내외 주요 기판 업체들에 안정적 공급 이력, 고품질·고신뢰성 검증

전이성

동일 공정 철학/레시피 → 유리기판·SoCAMM 적용 FC-BGA 공정 노하우 및 기술이 유리기판 및 신규 메모리 모듈 제조에 직접 활용 가능

크로스셀링

동일 고객군의 기술 진화에 따른 자연스러운 확장 기존 FC-BGA 고객 = 유리기판 도입 고객 → 확보된 신뢰를 바탕으로 신규 장비 공급 기회

상향 판매

고부가 공정 단계 확대, 서비스/소모품 수익 AI/HPC 패키징 고도화에 따른 기술 난이도·장비 가격 상승, 지속적 수익 모델 구축

3대 사업 시너지 효과

복합동박 + 유리기판 + FC-BGA/SoCAMM 사업 간 기술·고객 공유 타겟 고객사의 패키징·배터리 전략 변화에 맞춘 원스톱 솔루션 제공으로 경쟁 우위 확보

글로벌 밸류체인 구축 전략

한국 코어 역량

R&D/파일럿 핵심 기지

원천기술 개발 및 공정 레시피 확보 복합동박/유리기판 핵심 공정 IP 내재화 및 최신 기술 리드

중국 확장 전략

자회사 제조/현지화

중국 내 장비 생산 및 현지 고객 밀착 지원 현지 법인 통한 중국시장 공략 및 직접 판매/서비스 제공

글로벌 네트워크

글로벌 파트너십 확대

지역별 전략적 파트너와 협력 체계 구축 북미/유럽/일본 등 현지 업체와 합작/기술제휴 추진

글로벌 사업 운영

매출 인식 구조

- ▶ 자회사 매출 비중 확대에 따른 시차 발생
- 🖺 장기적 관점의 그룹 매출/이익 확대 전략
- ⑤ IR 메시지: 단기 실적 < 장기 밸류체인 구축</p>

IP/기술 거버넌스

- 핵심 IP/특허 본사 소유 및 관리
- ♪ 위약금/배상 조항으로 기술유출 방지
- ▶ NDA 기반 단계적 고객 접근 체계

단계별 확장

- 1 한국: 핵심기술/레시피/IP 내재화
- 2 중국: 대규모 제조/현지 영업
- 3 글로벌: 지역별 맞춤형 협력 모델

글로벌 사업 전략 태성 IR

3축 성장 엔진 종합 & 주주 메시지

■ 복합동박 × ESS 슈퍼사이클

장폭 1.4m, 수율 98%로 검증된 양산 장비 + 특허망 구축 성장형 시장(2033년 \$9.2B)에서 업계 유일 수준의 양산 레퍼런스 보유

유리기판 × AI 패키징 혁신

24단계 중 18단계 커버리지, 브로큰 방지·HF/알칼리 에칭 기술력 JWMT에 TGV 에칭기 납품 성공, 국내외 주요 기판사와 협상 막바지

■ FC-BGA & SoCAMM × 기존 레퍼런스

10조원대 기존 시장에서 확보한 에칭/도금 레퍼런스 → 유리기판·고층 기판으로 크로스셀 중국 자회사 확대로 글로벌 밸류체인 구축 중; 일부 매출 인식 시차 발생 가능

"기술 리스크는 상당 부분 해소, 남은 변수는 고객 투자 타이밍과 협상력"

IP/카피 리스크는 특허망과 NDA·위약금·임대공장 전략으로 철저히 관리 중

향후 12~24개월 모멘텀

복합동박 레퍼런스 확대

국내외 고객 계약 발표, 파일럿/임대공장 양산화

SoCAMM/AI 패키지 대응

고층 메모리 모듈/기판용 미세 에칭/도금 수주 확대

유리기판 고객 확대

JWMT 외 국내/글로벌 기판사 2-3곳 장비 공급

밸류체인 안착

글로벌 생산/레퍼런스 확대 → 한중일 공급망 통합

대표이사 메시지

태성은 2026년 매출 1조원의 중견기업으로 성장할 것입니다.

소중한 주주분들과 그 열매를 함께 나누고, 소통하며 이루어나가겠습니다.

대표이사

김종학 🖋

대표이사 메시지