

AVACO

Investor Relations 2025

Disclaimer

본 자료는 투자자들을 대상으로 실시되는 Presentation에서의 정보 제공을 목적으로 주식회사 아바코 (이하 "회사") 에 의해 작성되었으며 이의 반출, 복사 또는 타인에 대한 재배포는 금지됨을 알려 드리는 바입니다. 본 Presentation에의 참석은 위와 같은 제한 사항의 준수에 대한 동의로 간주될 것이며 제한 사항에 대한 위반은 관련 증권거래법률에 대한 위반에 해당 될 수 있음을 유념해주시기 바랍니다.

본 자료에 포함된 회사의 경영실적 및 재무성과와 관련된 모든 정보는 기업회계 기준에 따라 작성되었습니다. 본 자료에 포함된 "예측정보 "는 별도 확인 절차를 거치지 않은 정보들입니다.

이는 과거가 아닌 미래의 사건과 관계된 사항으로 회사의 향후 예상되는 경영현황 및 재무실적을 의미하고, 표현상으로는 '예상', '전망', '계획', '기대(E)' 등과 같은 단어를 포함합니다.

위 "예측정보"는 향후 경영환경의 변화 등에 따라 영향을 받으며, 본질적으로 불확실성을 내포하고 있는 바, 이러한 불확실성으로

인하여 실제 미래실적은 "예측정보 "에 기재되거나 암시된 내용과 중대한 차이가 발생할 수 있습니다. 또한, 향후 전망은 Presentation 실시일 현재를 기준으로 작성된 것 이며 현재 시장상황과 회사의 경영방향 등을 고려한 것으로 향후 시장환경의 변화와 전략수정 등에 따라 변경될 수 있으며, 별도의 고지 없이 변경될 수 있음을 양지하시기 바랍니다.

본 자료의 활용으로 인해 발생하는 손실에 대하여 회사 및 회사의 임직원들은 그 어떠한 책임도 부담하지 않음을 알려드립니다.(과실 및 기타의 경우 포함) 본 문서는 주식의 모집 또는 매매를

위한 권유를 구성하지 아니하며 문서의 그 어느 부분도 관련 계약 및 약정 또는 투자 결정을 위한 기초 또는 근거가 될 수 없음을 알려드립니다.

Investor Relations 2024

CONTENTS

Prologue

Chapter 01 Financial Performance

Chapter 02 Investment Highlights

Chapter 03 Vision

Appendix

Prologue


Advanced VAcuum & Clean equipment Optimize

Corporate Identity

핵심 기술 기반으로 첨단 산업 내 필수 장비 공급하는 기술 혁신 기업, AVACO

Positioning

Chapter 01
Financial
Performance

dvanced VAcuum & Jean equipment Optimizer

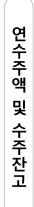
1Financial Performance실적 현황

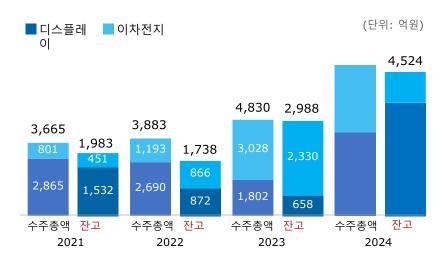
<u>연결기준</u> (단위 : 백만원)

						(- · · · /
구 분	2021	2022	2023	2024	YoY	2024.4Q
매 출 액	179,808	217,264	186,852	305,515	63.5%	103,572
⊝ 디스플레이 제조장비	130,858	155,455	68,247			
⊜ 이차전지 제조장비	40,143	32,765	69,779			
⊛ 3D PRINTER	6,604	8,013	30,301			
④ MLCC 제조장비		1,503	558			
⑤ 기 타	2,203	19,528	17,967			
매 출 원 가	147,365	169,231	156,435	248,993		83,050
매출총이익	32,443	48,032	30,417	56,521		20,522
판 관 비	22,633	34,461	26,009	35,417		13,159
영 업 이 익	9,810	13,571	4,408	21,104	378.8%	7,363
(영업이익률)	5.5%	6.2%	2.4%	6.9%		7.1%
당기순이익	12,537	18,106	4,257	26,393	520.0%	17,074

매출액

- 기수주 이차전지장비 매출 반영되며 24년 매출 전년대비 63.5% 상승. 창사이래 처음 3천억원대 매출 달성.
- (이차전지) 전년 동기 대비 약 3배 증가
- (디스플레이) 주요 고객사 투자 감소로 인한 수주부 진으로 전년에 이어 감소


영업이익


- 매출 큰 폭 신장에 따른 레버리지 효과로 매출총이익률 전년대 비 개선 (23년 16.3%→ 24년 18.5%)
- 이차전지 부문의 매출 증가에 따른 인건비 반영에도 불구하고 영업이익 전년 온기 대비 24년 약 380% 상승

출처: 사업보고서

02 실적 전망

디스플레이

- 중국 BOE OLED In-line Vacuum System 수주 + 중국 V사 투자 발표 후 추가 수주에 총력
- 국내/해외 고객사 증설 투자에 따른 디스플레이 증 착/모듈/물류 장비 신규 수주 기대감 지속

이차전지

- 전기차 캐즘 영향으로 고객사 투자 지연 및 트럼프 당선후 전기차 보조금 정책 불확실성 확대
- 기존 이차전지 후공정 자동화 시스템 + 전공정 장비 인 Roll press, Slitter 등 고객사 납품 추진 → 제품 포트폴리오 확대

디스플레이

2023년 이래 고객사 투자 감소로 인한 수주 부진
 → 24년 중국 BOE OLED In-line Vacuum System 수주
 25년 중국 패널사 투자 예정 수주 협의중

이차전지

- 23년 수주잔고 2,2988억원이 매출 반영되며 24년 실적 개선. 24년 수주 감소로 25년 매출은 약세 전망
- 전극공정 장비 등 신규 장비 개발을 통해 수주 활동 강화 → 26년 이후 실적 개선 기대

기타 장비

• Plasma Line, Metal Sputter 등 반도체 관련 장비 개발 완료 및 영업 → 매출 다각화 추진

1 Issue 2025

디스플레이

Display

글로벌 기업 투자 계획1)

(1) LG Display

1조 2천억원 자금조달 완료, 일부 8.6세대 OLED 투자 예상

BOE


8.6세대 OLED 약 11조원 투자(~26년)

연내 OLED 투자 계획 발표 예정

OLED 투자 재개에 따른 기존 자동화 시스템 이외 Sputter / 모듈 장비 추가 수주 기대

이차전지 Secondary battery 북미지역 배터리 예상 생산 규모 2) (단위: 기가와트) 700 2028 ~ 2030(E) 약 35% 점유 예상 LG Energy Solution

기존 자동화 시스템 추가 수주 기대 및 습식롤프레스, 건식전극, 전고체 등 전공정 고부가가치 신규 장비 수주 대응

HBM 생산을 위한 고객사용 반도 체 증착장비 투트랙 개발 진행 중

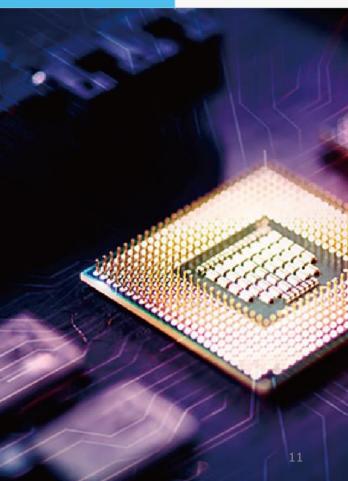
반도체 후공정 검사 장비 Field Test완료

계열사 아바텍 증설 물량 발주시 대응 장비 공급 확대 (적층기 등)

전장용 MLCC 양산을 위한 장비 개발 및 국내외 고객사 다각화 전 략

아바코 upside potential 및 전략

- 1) UBI Research, OMDIA, 보도내용 참고
- 2) Marklines, SNEResearch, 보도내용 참고
- 3) 한국반도체산업협회, 보도내용 참고
- 4) Global Information, 보도내용 참고



Chapter 02
Investment
Highlights

Advanced VAcuum & Clean equipment Optimize

Summary

디스플레이 산업

- OLED 진공증착장비 및 스퍼터 장비 고도화
- 글로벌 고객사 향 수주에 주력

이차전지 산업

- 상주공장 완공 → CAPA 확대로 외형 확대
- 전극공정 장비 개발로 향후 고객사 투자 확대시 대응 준비

기타 산업

MLCC, PCB, 반도체

- 계열사 아바텍 라인 증설시 수주 예정
- 글로벌 전자제품 A社 미국 협력사 내 R&D용 EDR 장비 납품 예정
- 반도체 핵심 장비(증착, 검사) 개발 완료

계열사 간 시너지로 경쟁력 강화

- 계열사 니즈 즉각 대응 가능 -> 장비 고도화
- 사업 확장 및 투자에 따른 장비 수주 수혜

주주가치 제고를 통해 지속가능한 성장 추구

- 첨단 기술 개발을 통한 매출 및 수익성 제고
- 자사주 소각, 고배당 정책 등 주주환원 정책 시행

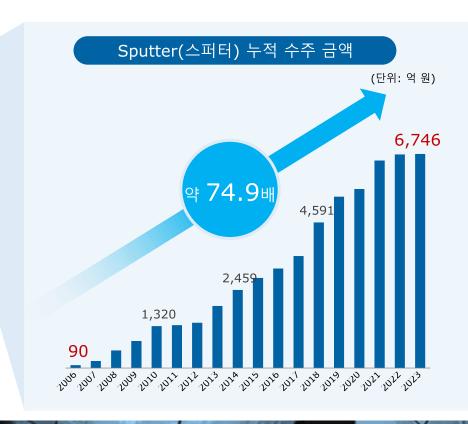
글로벌 고객사 및 네트워크 보유

- 24년 업력으로 글로벌 고객사 및 연구기관과 굳건한 네트워크 보유

○ 1 디스플레이 (1) Legacy Business로 안정적 사업 영위

24년 업력 기반 핵심 기술·장비 보유 및 고객사와 오랜 신뢰관계 구축

<u>디스플레이 핵심 장비</u>


Sputtering System (스퍼터)

디스플레이 기판에 산화물 및 금속 물질을 증착하여 박막 형성 (디스플레이 제조용 진공 증착 시스 6세대/10.5세대

OLED In-line Vacuum System

OLED 증착 공정 중 마스크 및 기판을 연속적으로 운송 (OLED In-line Vacuum System) 6세대/8.6세대

글로벌 고객사 레퍼런스 보유

기술 초격차 기반 시장 지위 선점

해외 유망 기술 보유 기업과 전략적 제휴

경쟁력 제고를 위해 연구개발 및 사업화

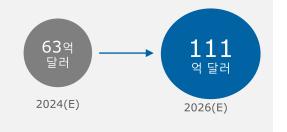
포트폴리오 확장

차세대 디스플레이 공정 장비로 확장

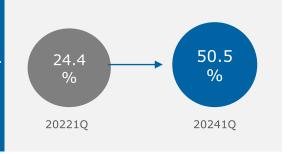
○ 1 □ □스플레이 (2) 국내외 OLED 성장의 최대 수혜자

글로벌 디스플레이 기업 향 OLED In-line Vacuum System 공급 → 최대 실적 기록 예상

글로벌 OLED 투자 추이


BOE

8.6세대 IT OLED 분야에 2026년까지 약 11조원 투자


Visionox

8.6세대 IT OLED 분야에 2027년까지 약 11조원 투자

세계 디스플레이 설비투자 예상 추이¹⁾

세계 OLED 중국 업체 점유율²⁾

OLED In-line Vacuum System 공급 중국 글로벌 2026년 말 양산을 목표로 8.6세대 IT용 디스플레이 기업 B OLED Line 증설, 월 3만 2,000장 생산 **OLED In-line Vacuum System** •OLED 증착 과정 중 불순물이 없는 진공상태에서 기판 검사 등의 공정을 수행하는 장비 •8.6세대 OLED 라인 구축에 필수 2024년 2024년 말 ~2025년 2026 장비 수주 장비 반입 양산 국내 유일 창사 이래 2024년 상반기 디스플레이 사업 OLED In-line 16K 물량 장비 사상 단일 규모 Vacuum System 수주 완료 검증 완료 최대 실적

1), 2) 시장분석기관, OMDIA 14

02 이차전지 (1) 핵심 장비 포트폴리오로 매출과 수익성 제고

차세대 매출 견인 대표주자, 이차전지 Roll-to-Roll 및 자동화 시스템 개발 완료 및 수주 완료

Roll-to-Roll 설비

- 전극공정 연속 생산의 핵심 설비
- 코팅 공정에 필요 롤 개수 최대
- 일본 및 유럽 장비 점유율 高
- 국내 소수 업체 생산 중 (기술 진입장벽 高)

자동화 시스템

- 이차전지 산업 외 다방면 적용 가능
- LG에너지솔루션 북미 지역 3,645억원 규모 수주

Our Strength

노하우 보유

디스플레이 물류 및 공정 장비 경험으로 우수 품질 장비 개발 가능

CAPA 확대 완료

상주 제 6공장 완공 및 가동 준비 완료 → 약 6천억원 규모 장비 생산 가능

글로벌 기업과의 네트워크

글로벌 기업 협력을 통해 제품 개발 및 Top-tier 매출처 보유

02 이차전지 (2) 핵심 장비

전극	Roll Press (Single Type)	전극	Roll Press (Tandem Type)		Slitter (슬리터)		전극용 테이핑기
기능	• 활물질이 도포된 전극 기재를 일정한 두께로 압연	기능	• 활물질이 도포된 전극 기재를 일정한 두께로 압연	기능	• 전극 폭을 규격에 맞게 절단	기능	• 양극 극판의 무지부 접힘을 방지하여 활물질 탈락 방지 및 안전성을 유지하는 시스템
특징	무인/자동화 고점도 양극 및 다층 극판 프 레싱 압연 롤 제작 압연 두께 편차 및 밀도 구현 극판 무지부 주름 제거	특징	 고정/조절 IP Digital Alignment 전극 파단 예지 및 감지 시스템 Press roll Bearing Housing 온도 및 진동 감지 시스템 무지부 Press 고도화 Main Roll 온도 균일화 전극을 연속 2번 압연 → 高 생생산성 및 압연율 구현 (두께 감소 및 밀도 향상) 	특징	 자동 칼날 위치 가능 Rewind Gap 및 터치모드 제어 고기능성 필름을 위한 저장력제어 개별 클리닝 롤 설치 가능 	특징	 Center 보정 Taper Roll 구성 Tape End 감지장치 Tape부착위치결정/정전기 제거 이물질 방지용 STS 재질의 Cover 설치
			스프링백(Spring back) 현상 방지				16

0 기차전지 (3) 롤프레스 적용 코어 기술로 진입장벽 구축

高진입장벽 및 핵심 기술 완비로 롤프레스 기반 외연 확장

롤프레스 장비

이차전지 공정에서 활물질이 도포된 전극(양극·음극) 기재를 압연해 일정한 두께(마이크로 단위)로 압연

특징

양극재, 음극재를 도포하는 전극코터(코팅장비)와 함께 이차전지 공정에 있어 핵심 장비로 분류, 기술 난이도 高 → 국내 소수 업체 생산 중: 기술 진입장벽 高

	(E)	고정/조절 IP Digital Alignment	• 고정 및 조절 IP에 대한 Digital Leveler 및 Laser 거리 측정을 통한 신뢰성 확보 • Digital을 이용한 Setting 기준 확보 및 이상 정렬 모니터링			
핵	\mathcal{M}	전극 파단 예지 및 감지 시스템	• 전극 파단의 전조 증상을 감지하여 파단 전에 설비 정지 및 조치 가능			
심 기 술		Press roll Bearing Housing 온도 및 진동 감지 시스템	• 압연롤 정밀도에 중요한 요소인 Bearing 열발생에 의한 팽창을 모니터링 • Bearing Housing의 온도 및 진동 모니터링을 통한 정상 작동상태 지속 확인			
	墨雷	무지부 Press 고도화	• 안정적인 Tap pressing을 통한 단선 예방 • Digital gauge를 통한 표준화 Setting 및 위치 모니터링을 통한 신뢰성 확보			
	A	Main Roll 온도 균일화	• 프레스 롤에 대한 TD 방향 온도 압연 시 ±1℃ 구현을 통한 압연 품질 향상			

0기차전지(4) 차세대 공정장비 개발

차세대 高효율 공정장비 개발로 경쟁력 강화 및 매출 다각화

건식전극공정 장비

<u>리튬메탈음극공정 장비</u>

단계	리튬이온 배터리	리튬메탈 배터리
음극 준비	흑연 슬러리 코팅 및 건조	리튬 증착 및 압착
전해질 충전	액체 전해질 주입	고체 전해질 도포 또는 특수 전해질
셀 조립	층상 ¹⁾ 조립 (laminate stacking) 또는 권취 ²⁾ (winding)	박막 셀 조립 또는 고체 상태 조립
포메이션 충전	표준 충전	덴드라이트 ³⁾ 억제를 위한 특수 충전 프로토콜

- 1) 층상 구조: 산소로 만들어진 팔면체 구성 층들이 규칙적으로 쌓여있는 구조
- 2) 권취: 배터리의 여러 층을 말아 감아서 하나의 셀로 만드는 과정
- 3) 덴드라이트: 리튬이온배터리 충전 시 음극 표면에 나뭇가지 형태로 쌓이는 리튬 결정체

18

03 기타 (1) Plasma Line : 핵심 장비

독일 우량기업과 JV 설립을 통한 PCB 공정장비 글로벌 진출 본격화

EDR 장비

기능

• 회로 기판에 박막을 코팅하기 위해 에칭과 증착을 연속 수행하는 건식 공정 장비

특징

- 고성능 전자제품 산업에 적용 가능
- 고밀도 다층 기판 및 IC 기판 제품 개발에 용이
- 플라즈마를 활용한 에칭/Desmear/전극(Cu)층 형성

슈미드아바 코코리아 JV 설립 (2018)

SCH

- 170년 업력의 독일 생산장비기업
- 자동차, 의약, 식품, 반도체 및 IT 등 다양한 산업분야 진출
- PCB분야 핵심 기술 보유

- 아바코의 장비 제작 기술 + 슈미드 그룹 영업력 및 PCB분야 노하우 시너지
- PCB 공정기술 확보 및 양산화를 통한 글로벌 진출

장비 개발 및 판매

2020

PCB 건식공정 및 플라즈마를 활용한 EDR 장비 개발

※ 대만 PCB 제조업체 납품 완료 (A社, D社)

유런

고도화 및 사업 확장

- 고객사와 양산화를 위한 초기 성 능 검증 완료 → 양산 대응 중
- PCB 및 Glass 기판에 미세 선폭 패턴 가공 가능
- → AI반도체 /고성능전자제품 시 장 공략

2025(E)

국내외 업체들과 양산테스트 및 R&D용 장비 수주 협의중

1 Investment Highlights 기타 (1) Plasma Line : 유리기판으로 응용처 확장

메탈라이 레이저 습식식각 유리원장 가공(TGV) 제이션 ABF **ABF** 구리도금 DSM VIA홀 가공 Lamination 도금 식각 세정 Lithography 싱귤레이션 유리기판

Turn-key로 유리기판 공정 장비 글로벌 고객사향 영업 계획

TGV장비 및 Plasma Line(PLP가능)장비 공급

1) TGV: Through Via Hole

2) ABF: Ajinomoto Build-up Film 3) DSM: Direct Surface Metallization

03 기타 (2) 반도체 : 핵심장비

Metal Sputtering System

기능

• 반도체용 박막 특성을 제어하여 다목 적 초순도 금속 박막을 제조

특징

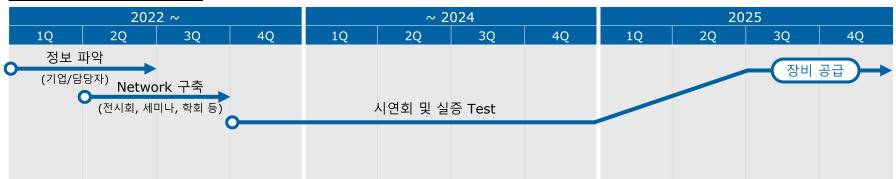
- 높은 신뢰성과 비용적인 측면에서 이점 제공
- 고객 요구사항에 따른 장비 구성 가능

3D Inspection System

기능

• Wafer 검사 및 리뷰 시스템을 통해 Wafer의 높이 및 위상 정보를 측정

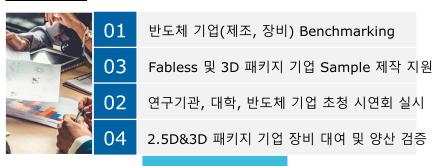
특징


- 3D 검사 방식으로 정확한 측정 및 분석
- nm 수준의 형상 검출 가능

03 기타 (2) 반도체 : 초기 인프라 구축을 통한 고부가가치 산업 진출

증착 및 검사 장비 마케팅을 통한 반도체 산업 진출

개발 및 공급 예상 전략



마케팅 타겟 기업

실행 전략

"우수한 장비 경쟁력 및 전략으로 고부가가치 반도체 산업 진출"

1 Investment Highlights 기타 (3) MLCC : 주요 공정 장비 개발 완료

⊖ Coating System(코팅기), Printing System(인쇄기)

• 내부 전극을 고속 및 연속으로 인쇄하고 열풍 건조시키는 Coating System과 그라비어 유닛을 합성한 형태의 인쇄 시스템

⊜ Stacking System (적층기)

• 세라믹 시트를 박리하고 高 전기적 특성을 유지, 정렬 위치를 보정하여 적층

MLCC 제조 핵심 장비

⊛ Dipping System (도포기)

• 칩 측면에 구리 외부 전극을 적용

4 N.G Chip Removing System

• 초음파 검사 이미지를 활용해 불량 칩 자동으로 선별

⑤ Arranging System

• 초음파 검사를 위해 MLCC 적층 방향을 자동으로 정렬하는 시스

03 기타 (3) MLCC : 계열사와의 시너지로 추가 매출 여력 존재

핵심 기술 기반 장비 고도화 → 계열사 신산업 진출 시 적용 가능한 포트폴리오 구축

향후 전략

<u>박막 코팅 및 MLCC 생산</u> Total Solution

- FPD의 ARAS를 위한 Coating Service
- LCD / OLED Glass Slimming (식각)
- MLCC 생산 (25년~26년 3.5 생산 Line 가동)

MLCC 생산라인 4개 증설 계획(~2026)

- 태양광 및 전장용 생산라인 구성 예정
- CAPEX 900억원

300억원 (2023) 연간 full-capa 매출액 600~700 억원 (2025E)

- 계열사 아바텍의 하반기 증설에 따라 적층기 등 공급 예정 (공장의 60% 이상 수주 예상)
- 중국 MLCC 제조사 'S'사에 하이엔드 MLCC 적층기 등 공급 예정

"아바텍과 함께 전장용 MLCC 사업 진출 도모"

1 Investment Highlights계열사 시너지 보유

계열사 간 시너지로 사업기반 확대 및 유기적 협력 체계 구축

- 진공 증착 Total Solution
- 디스플레이 산업 System 기술 보유
- 이차전지 장비 제작 기술 보유
- MLCC 및 반도체 장비 제작 기술 보유
- 맞춤형 장비 솔루션

- MLCC 전문 기업
- OLED 식각 사업
- FPD의 ARAS를 위한 Coating service

- 대형 진공 Chamber¹⁾ Total Solution
- 1981년 설립
- •정밀 기계 가공
- 대형 진공 Chamber 제작

Investment HighlightsCAPA 확대로 외형 성장 준비 완료

상주 신공장 가동으로 북미향 중심 이차전지 매출 성장 교두보 마련

1 Investment Highlights 글로벌 고객사 및 네트워크 확보

24년동안 글로벌 Top-tier 고객사 레퍼런스와 각 분야 전문가 네트워크 확보로 성장 동력 확보

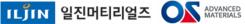
AUACO

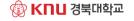
24년말 기준 누적 1,383 System 공급 실적 보유 (해외: 675 Systems) 국내 및 해외 250건 이상 특허 보유 (출원/등록 포함) 연구개발 44건 보유 (디스플레이 28건, 태양광 9건, 반도체 및

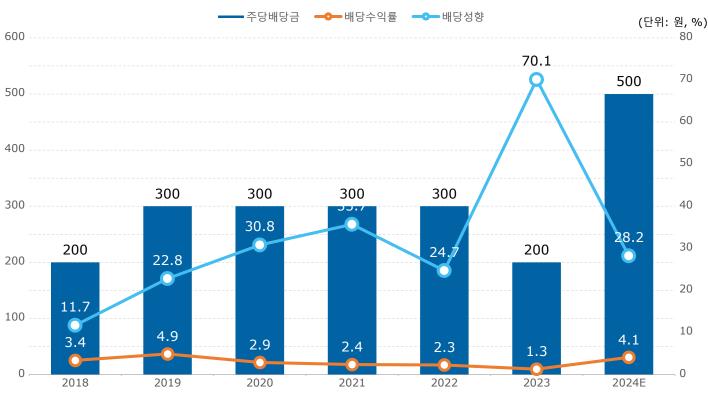
下江

Ø

K





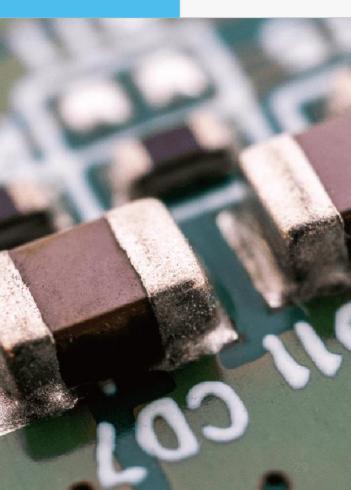


○ 7 ☐ 주주친화 배당 정책

주주환원 정책으로 지속 가능한 성장 도모

Comment

- •고배당정책 지속 > 주주친화적 배당 정책 실현
- •2023년 실적 악화에도 불구, 배당 성향 확대를 통해 주주환원 의지 유지
- •2024년 창사이래 최대 매출 기록하며 이익 확대와 함께 최대 주당 배당



Chapter 03 Vision

Advanced VAcuum & Slean equipment Optimize

01 Growth Roadmap

24년동안 글로벌 Top-tier 고객사 레퍼런스와 각 분야 전문가 네트워크 확보로 성장 동력 확보

Advanced VAcumm & Clean equipment Optimizer

사업영역 확대

- 글로벌 기업과 협업을 통한 차세대 제품 개발
- 핵심 기술 국산화 및 선행 기술 확보
- 계열사 및 주요 연구기관과의 시너지 효과

장비매출 성장 가속화

- CAPA 확대로 수주 역량 확보
- 글로벌 수준 대형 고객사 확보로 시장 점유율 확대

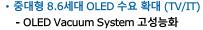
첨단산업 종합 장비 기업으로 성장

전방위적 성장을 위한 고부가영역 지속 진출

- 기술과 장비 고도화를 통한 첨단산업 전반 침투
- 이차전지, 반도체 등 고부가가치 영역 진출

02 Future Business

Next Generation OLED


Battery

Semiconductor

High-performance PCB

- LTPO용 저전력 구동을 위한 Backplane 스퍼터링 기술 구현
- 스트레처블 디스플레이, 투명 디스플레이 니즈 확대
 - Flexible 기판에 적용 가능한 스퍼터링 기술 확보
 - 고투과 및 저저항 전극 스퍼터링 기술 확보 (90% 이상의 고투과도, 고시인성 구현)
- 이차전지 자동화시스템의 장비 스마트화 기술 구현
- 장비 스마트화의 고도화 및 안전 구동 기술 적용
- 고성능 전극공정 시스템 기술 개발
- 건식전극설비(Roll & Lami.) 기술 구현으로 高로딩 및 高용량 전극 개발
- 리튬이온배터리 한계에 따른 차세대 전지 니즈 확대
- 전고체전지, 동위원소전지, 저온박막형 연료전지 기술 개발
- Micro HBM 기술 니즈 확대
- AI 및 고성능 컴퓨팅 분야에 최적화된 장비 기술 개발
- FoWLP, PLP, 3D 패키징(TSV) 등 반도체 고성능화를 위한 패키징 기술 요구
- 미세 패턴(10nm이하)을 위한 패키지 공정 기술 개발 (Metal Sputtering)
- AI 반도체, 고성능 전자제품 등 고집적화를 위한 첨단 패키징을 위한 공정 기술
- 반도체 패터닝 공정을 건식(플라즈마)으로 적용 (기존: 습식)
- Line & Space를 2μm이하로 단축
- 고정도의 패터닝 기술 구현

MLCC / Laser / 3D Printer

- MLCC: 전장용 장비 개발 및 全 공정 적용 가능한 장비 Line-up 구성
- LASER: Glass 기판용 LIDE 레이저 기술을 적용한 TGV 공정 개발
- 3D Printer: 항공/우주/조선 등 고정도 제품 적용 가능한 Metal 3D 기술 구현

Appendix

Advanced VAcuum & Clean equipment Optimize

1 회사 현황

회사 개요

법인명 주식회사 아바코 대표이사 김광현 설립일 2000년 01월 16일 임직원수 415명 (24.12월 기준) 자본금 80억원 대구광역시 달서구 성서4차 본점 소재지 첨단로 160-7(월암동) 홈페이지 www.avaco.co.kr · LCD 및 OLED 진공, 전용장비 · 2차전지 자동화 시스템 주요제품

· 산업용소재 제조용 Roll-to-roll 장비

· 3D Printer 장비 등

CEO 프로필

김 광 현대표이사

경력 '15 ~ 現 ㈜아바코 대표이사 '10 ~ '15 ㈜아바코 부사장

'08 ~ '10 LG MSD(Meridian Solar & Display)

신사업 담당

'00 ~ '07 LG Philips Displays 디스플레이

사업부 부장

학력 '84 영남대 기계공학과 졸업

<u>조직도</u>

대표이사

글로벌 안전환경본부

IR	센	터

경영지원	진공	자동화	부설연구소	개발	구매	전략	제조
본부	사업본부	사업본부		본부	본부	기획실	C/T
• 경영지원 Gr	• PE* 사업부	• CM*사업부 • AE*사업부 • ME*사업부	중앙연구소반도체연구 소	• ENG C/T • 제어 C/T		기획팀정보기 술팀	

^{*} CM (Converting Machine), AE(Automation Equipment), PE(Process Equipment), ME (Module Equipment)

02 성장 연혁

WACO AVACO

Advanced VAcuum & Clean equipment Optimizer

설립 및 기반 구축 2000년 ~ 2007년

- 2000 ㈜AVACO 설립
- 2004 대면적 Sputter 기술개발 사업자 선정 (산업자원부)
- 2005 성서 4차단지 제 2공장 건립 - KOSDAO 상장
- 2006 국내최초 LCD TFT Sputter (G7)개발
- 2007 대구광역시 스타기업 선정

성장기 2008년 ~ 2014년

- 국내 최초 박막태양전지용 In-line Sputter (G5) **2008** 개발
- 2009 구미 4차단지 제4공장 건립
- 2010 국내 최초 LCD CF/Sputter (G8) 개발 - AVACO Inc (USA) 미국법인 설립
- 2011 NFRI(국가핵융합연구소)와 Sputter Plasma 3차원 시뮬레이션 기술이전 완료
- 2012 `2012 World-Class 300' 기업 선정(지식경제부)
- 2013 AVACO Machinery(Guanzhou) 중국법인 설립
- 2014 CIGS 박막태양전지 정부과제 완료(산업통상자원부)

도약기 2015년 ~

- Miasole Hi-Tech 美 태양광 제조장비 공급 - NFRI, ETRI (한국 전자통신연구원)와 상호협력 협약 체
- 2016 고밀도 플라즈마 증착 장비 정부과제 완료(산업통상자
 - 구미 4차단지 제5공장 건립
- 2017 투명 Flextible Display 정부과제 완료(산업통상자원부) 산업통산자원부 사업화 부문 장관상 수상
- **2018** 동위원소 이차전지 정부과제 선정(산업통산자원부)
 - 10.5세대 OLED 용 Sputter 및 물류 장비 개발
 - 독일 PCB 장비 업체와 기술 제휴 및 JV 설립
 - PCB & PLP Substrate용 etcher & Sputter 개발
- 반도체 FOWLP Metal Sputter 해외 기업과 전략적 제 **2019**
- 2020 반도체 Optical 검사장비 해외 기업과 전략적 제휴 이차전지 및 PCB용 Roll-to-roll 장비 사업부 신설
- 2021 슈나이더일렉트릭코리아와 공동협력 MOU 체결
 - '이달의 산업기술상' 수상 (산업통상자원부)
- 2022 이차전지 Roll-to-roll 장비 개발완료
- 상주 신공장 건립(상주일반산업단지) **2023**
- **2024** BOE 우수협력사 수상

03 주요 생산 거점

파주 제3공장

• FPD용 Clean물류 반송장비

동탄 반도체 연구소

• 반도체 검사 장비 및 공정 장비

대구 제2공장

• 진공 장비 및 FPD용 Clean 물류 반송장비

상주 제6공장

• 이차전지 자동화시스템 및 Roll-to-roll 장비

구미 제4공장

• 대면적FPD용 Sputter & Module 장비

• 이차전지 및 PCB용 Roll-to-roll

구미 제5공장

• FPD용 Clean물류 반송장비

본사 (대구 제1공장)

• R&D 및 대면적FPD용 Sputter & Module 장 비

04 Appendix 요약 재무제표(연결)

<u>재무상태표</u>

(단위 : 억 원)

구분	2021	2022	2023	2024
유동자산	1,933	1,942	2,522	2,921
비유동자산	704	843	927	986
자산총계	2,637	2,785	3,449	3,907
유동부채	1,049	1,073	1,553	1,839
비유동부채	23	24	54	56
부채총계	1,072	1,097	1,608	1,895
자본금	80	80	80	80
자본잉여금	477	477	572	572
기타자본 구성요소	(57)	(79)	(14)	(40)
이익잉여금	1,064	1,211	1,203	1,400
자본총계	1,565	1,688	1,842	2,012

<u>포괄손익계산서</u>

(단위 : 억 원)

구분	2021	2022	2023	2024
매출액	1,798	2,173	1,869	3,055
매출원가	1,474	1,692	1,564	2,490
매출총이익	324	480	304	565
판매비와 관리비	226	345	260	354
영업이익	98	136	44	211
금융수익	14	31	26	29
금융비용	38	29	32	49
기타수익	83	89	51	210
기타비용	9	45	33	79
세전계속 사업이익	148	182	55	323
법인세	22	0.8	13	59
당기순이익	125	181	43	264

05 Appendix 수상 및 인증

2006	한국진공연구조합 신제품 개발상 - OLED용 Encapsulation System
2007	39주차 장영실상 수상 - LCD제조용 Sputtering system
2007	ISO14001 인증 획득 (ISO9001 : 2002년 획득)
2008	부품소재기술개발 지식경제부 장관 표창장 - Sputtering System
2010	대한민국기술대상 (지식경제부장관상) - 초대면적 Sputtering System
	세계 일류 상품 승격(지식경제부) - Sputter
2011	지식경제부장관 기술개발 유공자 표창 - OLED용 Encapsulation System
2011	국가연구개발 우수성과 100선 선정 - LCD Sputtering System
2015	OHSAS 18001 인증 취득
2016	경상북도 구미시 12월 기업 선정
2017	산업통상자원부 사업화 부문 장관상 수상 – MSPT 기술 개발
2020	ISO 45001 인증 획득
2020	과학기술정보통신부 장관상 수상
	산업통상자원부 핵심전략기술 인증 - IGZO SPT
2021	글로벌 핵심 기술확보 장관상 수상
	이달의 산업기술 장관상
2023	LG디스플레이 Best Partner Award 수상
2024	BOE 우수협력사 수상

[장영실상]

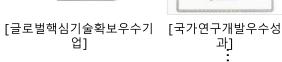
[지식경제부장관상]

국가연구개발 우수성과

SAM: TFT-LCD ARM HERE Sputsering SM TN

드립니다.

위하의 연구설과가 2011년 국가연구개발 우수설과 100년으로 선정되었기에 이 증시를


2011년 11월 30일 전기(1011년) 조가파티가송위원회 위원장 김 도

소속 : (주)아마코 설명 : 단병됨

[산업기술상]

[세계일류상품]

국내 공공기관 및 연구기관에서 우수성 인증획득 수상 10건+/ 인증 5건

106Investment Highlights연구소 국책과제 현황

총 4건 (182.7억원) 완료, 5건 (331.8억원) 진행 중, 1건 (137억원) 선정 완료

사업분야	관련제품	과제명	진행여 부	금액(억원)
	Sputter (Oxide TFT)	OLED공정장비용핵심부품기술개발사업 / 산화물 TFT 스퍼터에서 아웃가스 최소화를 위한 기판 이송 부품 개발		37.7
	Sputter (전자빔을 이용한 진공 열 처리)	기계산업핵심기술개발사업 / 8세대급 대면적 전자빔을 이용한 양산대응형 진공열처리 기술 개발	완료	38.4
WWW.	Sputter	소재부품기술개발사업 / 대면적 6G급 이상 OLED용 고성능/고진공 크라이오펌프 개발		23.7
디스플레이	Display/ Lamination 장비		72.3	
	Sputter (Metal Target 용)	소재부품기술개발사업 / 디스플레이용 고순도 AI, AI합금 스퍼터링 타겟 기술 개발	진행중	75.3
	Sputter (Metal Target 용)	소재부품기술개발사업 / 디스플레이용 고순도 Mo, Mo합금 스퍼터링 타겟 기술 개발		79.1
	Sputter	G6 TOE Down depo. Sputter 개발 - Down Dep., Rotary Cathode, ESC 제어 기술 개발 → 박막 Defect 감소, 생산성 향상 등	선정완 료	137
TITI	동위원소 전지	산업핵심기술개발사업/ 동위원소기반 외부환경 독립형 반영구 독립전원 시스템 개발	완료	82.9
선지	Sputter	신재생에너지핵심기술개발사업/ 500 ℃ 운전용 박막 기반 고체산화물 연료전지 셀·스 택 개발	진행중	53.3
반도체	Sputter	차세대 지능형반도체 기술개발사업 / 600W급 EUV 펠리클 제조를 위한 금속성 탄화물소재 기반 박막 증착 및 열처리 장비 개발	진행중	51.8
		하 게		651.5