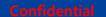


CG인바이츠 주주설명회

Invites Ecosystem

2025.02.20 [제 1차]

서울시 강서구 마곡중앙8로 38 인바이츠생태계 Copyright 2025. Inviteseco INC. All rights reserved.


Confidential

Contents

2025년도 IR/PR Plan

주요사업 진행 현황 (항암백신 등)

Q&A

2025년도 IR/PR Plan

IR 목표 : 주가 Doubling +@시총 4,000억원 ↑


CGI 의 일관성 있는 메시지 전달 + Milestone 별 완료 예정 시기 + 달성 여부 안내

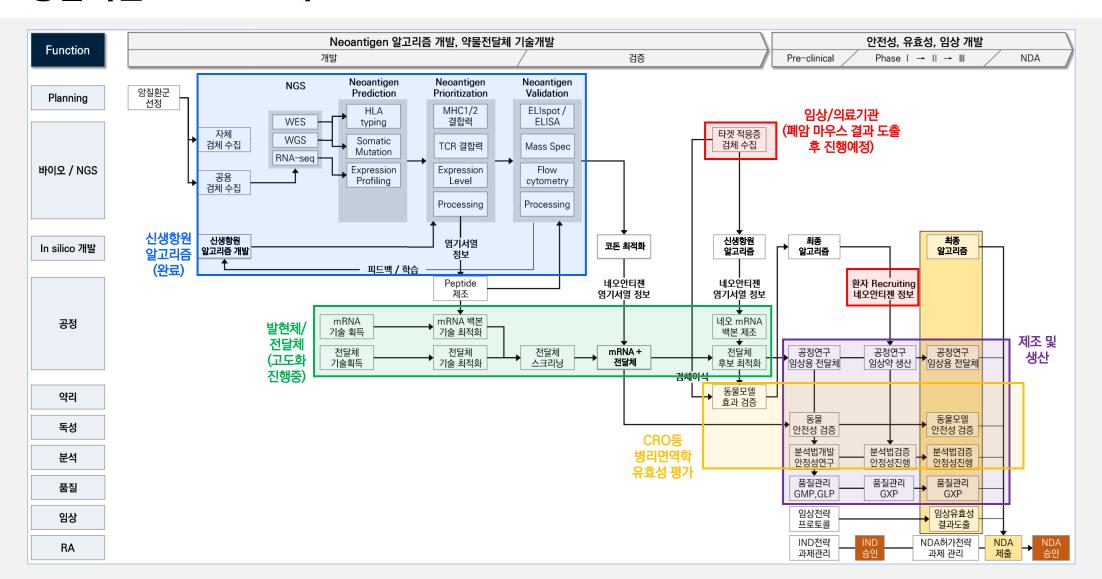
PR 목표: Coverage 확대 (전문지를 넘어 일간지로)

CGI 의 일관성 있는 메시지 전달 + Milestone 별 완료 예정 시기 + 달성 여부 안내

2025년도 주요사업 진행 현황

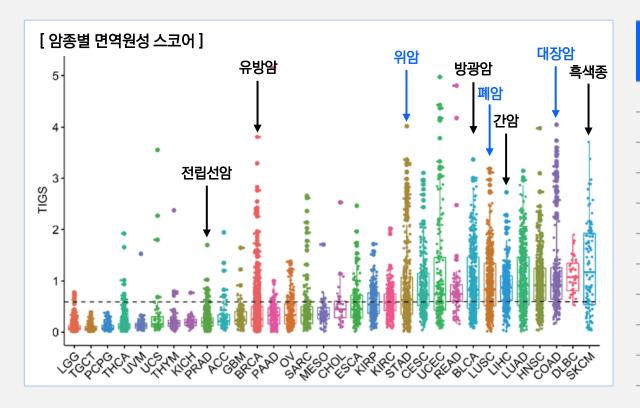
항암백신 주요기술 및 진행현황

- 항암백신 주요기술 : 신생항원 알고리즘 개발 및 구축, mRNA 플랫폼 확립, 코돈 최적화, 전달체 패키징 기술 정립, 효능 및 독성시험, 백신 제조 및 생산(소량 다품목) 등
- 각 주요 기술 연구 동시다발 진행을 통한 연구 기간 절약 및 연구 개발 성과 도출


단계	주요기술	내용	진행현황
1	신생항원 예측 알고리즘	AI 활용 종양 특이적 신생항원 예측	세계 최고수준의 정확도 확보
2	발현체 (mRNA)	mRNA 플랫폼 및 코돈 최적화	글로벌 리딩기업 대비 동등/이상의 발현효율 보이는 mRNA 플랫폼 확보 (고도화 연구개발 중)
3	전달체 (LNP)	LNP / Lipoplex 활용 mRNA 보호 및 전달	오픈이노베이션 전략으로 협력 파트너 (미공개) 와 공동 연구 진행중 (목표 조직 특이적 전달력 확보)
4	유효성 테스트	in vitro / in vivo / ex vivo 등 면역세포실험	CRO 기업 활용 대장암 마우스 모델 2회 테스트 완료, 폐암 마우스 모델 1차 테스트 진행중 (폐암 마우스 모델 유효성 테스트 후 임상샘플에 대한 유효성 테스트 진행예정)
5	제조 및 생산	개인맞춤 mRNA 항암백신 제조 (소량다품목)	CDMO 기업과 전임상을 위한 제조 및 생산 논의 중

항암백신 주요기술 중요성

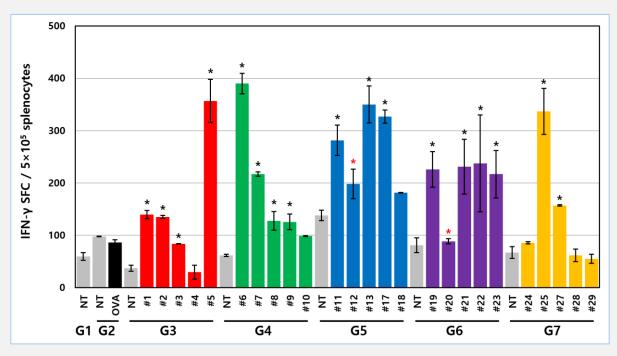
- 신생항원 예측 알고리즘의 중요성
 - 신생항원의 정확한 식별이 치료 효과를 결정 (낮은 부작용)
 - AI 기반 예측 알고리즘을 통해 치료 속도를 단축하고 신속한 백신 제작 가능
- mRNA 플랫폼의 적합성
 - 빠른 설계 및 생산 : 개별 환자 종양 특이적 신생항원 항암백신 신속 제작 (글로벌 리딩기업: ~6주)
 - 강력한 면역 반응 유도 : 세포 내에서 항원 발현, CD8+ / CD4+ T-세포 면역 반응 유도
 - 유전체 변형 위험 없으며, 일정 기간 항원 발현하고 분해되므로 부작용 가능성 낮음


발현체 플랫폼	장점	단점						
Peptide 백신	 합성이 쉽고 비용이 저렴함 특정 항원 표적 가능 안정성이 높아 보관 용이 	• 면역원성이 약함						
DNA 백신	 장기적인 항원 발현 가능 생산이 용이하고 비용이 저렴함 안정적인 보관 가능 	 세포 내 전달이 어려움 낮은 단백질 발현량 항원성이 약할 가능성 						
mRNA 백신	 빠른 개발 가능 (팬데믹 사례 참고) 세포 내 단백질 발현 유도 용이 면역 반응이 강력함 	・ 불안정하여 낮은 반감기 (→ 전달체로 극복) ・ 생산 및 저장 조건이 까다로움						
수지상세포(DC) 백신	강한 면역 반응 유도 가능 종양 특이적 면역반응 유도	제조 과정이 복잡하고 비용이 높음 표준화된 대량 생산 어려움						

항암백신 R&D 프로세스

항암백신 적응증 후보

• 암종별 면역원성 스코어(TMB, 발현) 및 암 발생순위(=시장 규모) 고려, 폐암 / 대장암 / 위암 등 높은 우선순위 고려 중


Rank	암 발생순위					
nank	국내(2020)	해외(2020)				
1	갑상선암	유방암				
2	폐암	폐암				
3	대장암	대장암				
4	위암	전립선암				
5	유방암	위암				
6	전립선암	간암				
7	간암	자궁경부암				
8	췌장암	식도암				
9	담낭/기타담도암	갑상선암				
10	신장암	방광암				

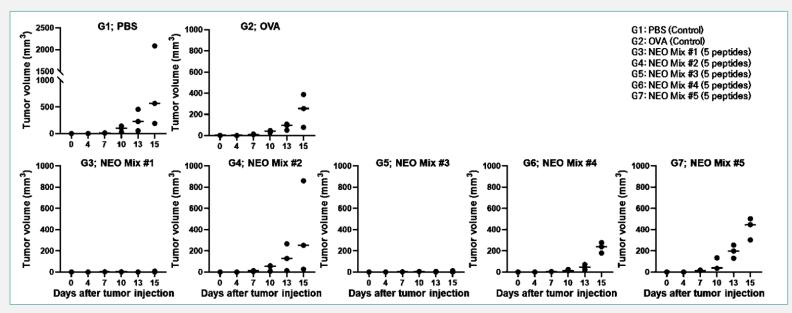
개발 예상 Timeline

• 전임상: 25년 전임상 진행하여 26년 2Q까지 완료 (24년 3차 주주설명회 내용 동일)

그ㅂ			2024		2025				2026					
구분		1Q	2Q	3Q	4Q	1Q	2Q	3Q	4Q	1Q	2Q	3Q	4Q	
개발	신생항원	알고리즘 개발												
	알고리즘	PoC 검증							}					
	mRNA 플랫폼	알고리즘 개발						>						
		신규 mRNA 도출												
		발현 최적화												
	전달체	기술 검토/확보												
	제형	유효성 확인												
	효능시험	동물모델												
		임상샘플												
전임상	mRNA 생산 (GLP 독성용)								}					
	DS 생산 (GLP 독성용)								>					
	GLP 독성	안전성약리												
		반복독성												

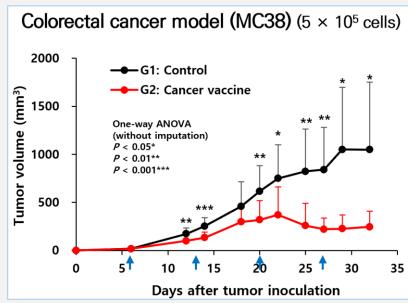
PoC - 면역원성 (24년 3차주주설명회 내용 동일)

100.0% 90.0% $P = 0.000064 (\chi^2 \text{ test})$ $P = 0.014(\chi^2 test)$ 80.0% 70.0% 60.0% 50.0% 40.0% 30.0% 20.0% 10.0% CG인바이츠 (대장암) B사 (대장암) B사 (흑색종) B사 (유방암) N사 (대장암) G사 (대장암) G사 (흑색종)


Immunogenic neoepitope ratio

*마우스 대장암 대상, 19/25 (76%) 신생항원이 강한 면역원성 유도

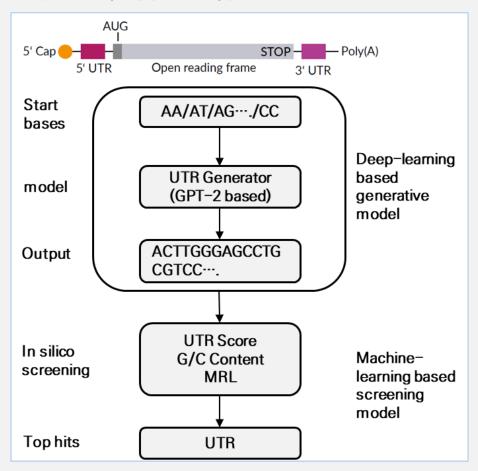
*글로벌 리딩 기업의 대장암 예측 정확도(~20% 수준) 대비 2.8배 글로벌 리딩 기업의 모든 암종 최고 예측 정확도 대비 1.7배 높은 예측 정확도


PoC - 종양성장억제

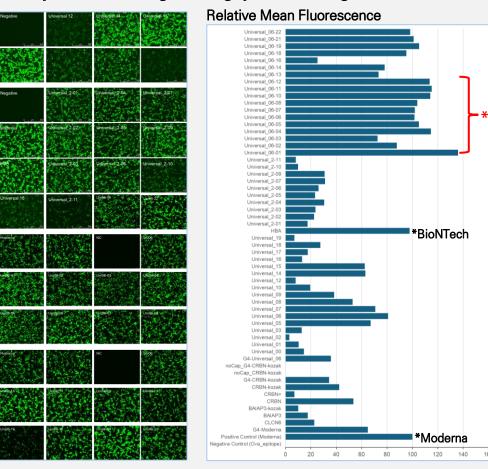
예방용 셋팅, 대장암 (24년 3차 주주설명회 내용)

*G3, G5에서 complete growth inhibition, G4, G6에서 partial growth inhibition 확인
→ 전체 신생항원을 모두 처리 했을 경우, 더 높은 항암 효과 기대

치료용 셋팅, 대장암 재현성 테스트 (25개 신생항원통시투여)



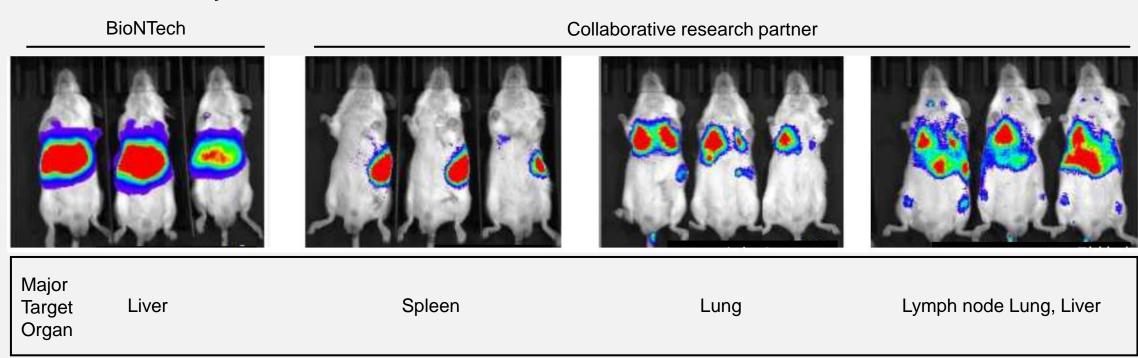
*많은 암세포수(타기업대비 5배 많은 암세포수) 늦은 투여시기(타기업대비 6배 느린 투여 days)의 harsh한 치료용 셋팅에서, 항암효과 통계적 유의성 확인


^{*}현재 폐암 마우스 모델(LL/2)을 활용한 면역원성 및 종양성장억제 유효성 테스트 진행중

mRNA 플랫폼 (24년 3차 주주설명회 대비[글로벌 그룹 유사], 최적화 연구개발을 통한 발현효율 증대)

AI 기반 UTR 서열 생성 및 스크리닝

UTR optimization / High throughput screening



^{*}생성형 AI 알고리즘 개발 → 글로벌 리딩 그룹 동등/이상 수준 효율적으로 발현하는 mRNA template sequence (UTR) 확보

전달체 (LNP / Lipoplex)

타겟 조직 특이적으로 전달할 수 있는 전달체 플랫폼 연구개발 중

Fluc mRNA@LNP I.V. injection

^{*} 전달체(LNP / Lipoplex)의 경우, 공동협력 파트너와 연구개발 진행 중 (Open-Innovation)

Q&A

