

01 Genexine Overview

Genexine

"Focused on the Development of Innovative Immunotherapeutics and Saving the lives of Patients."

Chairman/CEO	Young-Chul Sung Ph.D.
Key Milestones	Established in June, 1999Listed on KOSDAQ since 2009
Core platform technologies	hyFc antibody fusion technologyDNA vaccine technology
Focus area of R&D	Immuno-oncologyOrphan drugs
Employees	• 155 (MD 1, Ph.D 20, MS 55)
Market Cap	• \$2.5 bn (October 2020)
Location	 Pangyo Korea Bio Park, Gyeonggi-do, Korea

02 Genexine's Platform Technologies

Innovative platform technologies aiming for global expansion

hyFc[™] (Long-acting protein drug)

Increased protein activity by combining IgD (flexible hinge) & IgG4 (stable long acting) for applying various APIs.

First-in-Class

- Immuno-oncology drug (GX-I7)
- Immunosuppressive drug (GX-P1, GX-P10)

Best-in-Class

- Growth hormone deficiency treatment drug (GX-H9)
- Chronic kidney disease-induced Anemia correction drug(GX-E4)
- Neutropenia correction drug (GX-G3)
- Type 2 Diabetes treatment drug(GX-G6)
- Short bowel syndrome treatment drug(GX-G8)

DNA vaccine (cancer therapeutic/ infectious disease)

innovative gene therapy can provide preventive and therapeutic vaccines through strong immune response.

First-in-Class

Therapeutic DNA Vaccine

 Cervical cancer, Head and Neck cancer vaccine (GX-188E, GX-200 series)

First-in-Class

DNA Vaccine for Prevention

• COVID-19 vaccine (GX-19)

03 Genexine's Open Innovation - L/O and Strong Partnership

- Win-Win strategy with L/O partner company: share hold leads to strong partnership building process
- As clinical stage advances partners' company value increases + L/O value increases.

04 Genexine's Open Innovation: Co-development Strategy

- 6 (by GX alone) +18 (co-development trials) = 24 pipeline in clinical stage
- Compare to 2015 number of clinical pipelines increased 3.5-folds
- R&D cost kept approx. \$ 40 M since 2017

05 Genexine's DNA vaccine Platform technology

Clinically demonstrated safety and efficacy!

06 GX-188E: High efficacy and safety results (with Keytruda)

- Interim analysis reported (KEYNOTE-567) at AACR in April 2020, Results from clinical trial phase 2 for combination with Keytruda
 - Efficient HPV-specific immune responses induced in 78% of patient.
 - Excellent safety and tolerability (*similar side effects observed in Keytruda mono. and combination therapy).

Ph2 Interim Result

ODD	Efficacy cota	PD-L1 s	tatus ^b	HPV type		
ORR (%)	Efficacy set ^a (N=26)	Positive (N=20)	Negative (N=6)	HPV16 (N=19)	HPV18or both (N=7)	
CR	4 (15.4)	4 (20.0)	0 (0.0)	4 (21.1)	0 (0.0)	
PR	7(26.9)	6 (30.0)	1 (16.7)	5 (26.3)	2 (28.6)	
SD	4 (15.4)	3 (15.0)	1 (16.7)	3 (15.8)	1 (14.3)	
PD	11 (42.3)	7 (35.0)	4 (66.7)	7 (36.8)	4 (57.1)	
ORR	11 (42.4)	10 (50.0)	1 (16.7)	9 (47.4)	2 (28.6)	
DCR	15 (57.7)	13 (65.0)	2 (33.3)	12 (63.2)	3 (42.9)	

07 GX-188E: Clinical Trial & Development Timeline

^{*}Next Generation of HPV DNA Vaccine: semi-personalized vaccine

- **Bio Challenger program
 - MFDS selected Genexine's GX-188E as the first "Bio-Challenger" in June 2020.
 - MFDS provides overall specialized services by assigning dedicated personnel for accelerated process in registration, review, etc.

08 COVID-19 DNA vaccine

"already acquired safety and efficacy from 300 patients"

GX-19 Development Outline/Overview

Туре	DNA vaccine
Code	• GX-19-HV- 001
Number of subjects	 Phase 1 : N=60 (20 per dose group) Phase 2a : N=150 (100/placebo 50)
Study objectives	 Evaluate the safety, tolerability, and immune response of doses
Target subjects	 Healthy adults aged 19 ~ 50
Frequency & Method	• Intramuscular injection (2 injections/4 weeks)
Delivery devices	Electroporator, EPNeedle free injection system
Clinical sites	6 institutions including Severance Hospital

GX-19 Development Timeline

- Mar 2020 : Consortium formation among six institutions (Genexine, Binex, IVI, GenNBio, KAIST, POSTECH)
- June 2020: Ph1/2a MFDS approved.
- 4Q 2020: Ph1 completion and Ph2a start
- 3Q 2021 : Conditional approval submission

O9 DNA vaccine shows good safety profile

Immunogencity of GX-19 in macaques

- S-specific Ab & neutralizing Ab were induced in macaques
- IFN-g ELISPOT & CD4+/CD8+ T cell responses were induced

A. S-specific binding Ab

B. nAb to live SARS-CoV-2

C. IFN-γ ELISPOT responses

Cynomolgus Macaques 3 5.5 8 weeks Blood

D. Th1 cytokine-secreting CD4+/ CD8+ T cells

11 Protection against SARS-CoV-2 challenge: Viral loads

- Ten weeks after the final immunization, macaques were challenge with SARS-CoV-2 via combined route
- GX-19-immunized macaques showed reduced peak viral loads and early clearance of the virus

12 Protection against SARS-CoV-2 challenge: Symptoms & Infectious virus

- GX-19-immunized macaques did not have a fever after challenge
- Infectious SARS-CoV-2 was not detected at 2~4 days post challenge in vaccinated macaques

13 GX-19, COVID-19 DNA vaccine

- GX-19, 2 mg liquid vial containing plasmid DNA encoding SARS-CoV-2 Spike protein gene
- Route: Intramuscular injection using EP or needle-free jet injector
- Development stage: Ph1/2a approved by KFDA, currently Ph1 ongoing

14 GX-19: Clinical Stage COVID-19 DNA Vaccine Candidate

Genexine, Korea's 1st and global 15th approval for clinical studies

DNA Vaccine characteristics

Fast development of the candidates – Manufacturing process is simple & fast

Over 460 clinical studies proved Safety, simultaneous responses of neutralizing antibody (Th1-biased) cellular immune responses

comparison	RNA vaccine	DNA vaccine	
Manufacturing	in vitro (no host cell)	Cultivation of E.coli as host	
Expression of antigen per nucleic acid molecule	High	In theory single DNA can produce more RNA, therefore it generates more antigens.	
Risk in inserting into chromosome	None	Possible in theory but does not happen in real	
Conditions in order to express antigen within a cell	Must exile from endosome	Needs to penetrate into nucleus	
Optimization of deliveration	Need to be resolved (several methods are in trial)	Need to be resolved (several methods are developed)	
Toxicology	Needs to proven from more studies	Safety confirmed from various clinical studies	
Storage	Deep freeze (−70 °C)	Room temp. or refrigeration(4°C ~ 25°C)	

-	A CUI	Virus-vector	AstraZeneca(Oxford) : Ph3	Subunit	Novavax Pfizer : Ph3	Inactivated	• SinoPharm(Wuhan): Ph3
T	Others	Vaccine	CanSino(Tianjin) : Ph3	Vaccine	SK Bioscience	Vaccine	 SinoVac(Beijing): Ph3

15 Long-acting Interleukin-7 (IL-7-hyFc)

Comparison of Hyleuki-7 with rIL-7 protein

- ✓ Higher protein stability due to N-terminal engineering
- ✓ Higher productivity⁺ than rhIL-7 protein by hyFc fusion
- ✓ Longer in vivo half-life than rhIL-7 protein due to FcRn-mediated recycling of IgG4 & reduced renal clearance.

16 GX-I7: Mechanism of Action (MoA)

Genexine

IL-7 Stimulates Differentiation of Multi-potent HSCs into CLP cells

* blockbuster products

*CLP; Common Lymphoid Progenitor

Baker SJ et al. Oncogene. 2007;15;26(47):6724-37

17 GX-I7: Developing as COVID-19 Therapeutics

The only Korean biotech developing both vaccine and therpeutic medicine for Covid-19

Genexine COVID-19 therapeutic medicine

	МоА	Clinical Phase	Remark
IL-7-hyFc (GX-I7)	Lucy and a second (T call amplificat)	KOREA: Phase 1b	
	Immunotherapy (T cell amplifier)	US: Phase 1	Co-development with NIH

X Collaboration with Y-biologics for developing antibody therapy (virus neutralization) nAb

Development timeline

- 2020, 2Q, IND approval by US FDA (NeoImmuneTech)
- 2020, 3Q, IND approval by Korea MFDS (Genexine)
- 2020, 4Q, Patient injection start (Multi-national)
- 2021, 1Q, Clinical Ph1/2 Interim result
- 2021, 2Q, Ph3 IND submission

Clinical development overview (Korea)

candidate	• GX-I7
Number of subjects	• 40 (32 + 8 placebo)
Study objectives	• safety, efficacy(increase lymphocytes %)
Target subjects	Moderate patients
Frequency & Method	Single dose within 7 days after infection

18 Lymphopenia in COVID-19: Worsening symptoms & mortality

JAMA | Original Investigation | CARING FOR THE CRITICALLY ILL PATIENT

Clinical Characteristics of 138 Hospitalized Patients

With 2019 Novel Coronavirus-Infected P

The NEW ENGLAND JOURNAL of MEDICINE

Dawei Wang, MD; Bo Hu, MD; Chang Hu, MD; Fangfang Zhu, MD; Xing Liu, MD; Jing Zhenshun Cheng, MD; Yong Xiong, MD; Yan Zhao, MD; Yirong Li, MD; Xinghuan War

Clinical Characteristics of Coronavirus Disease 2019 in China

ORIGINAL ARTICLE

- Moderate to severe COVID-19 patients develop severe lymphopenia that is associated with greatly increased mortality.
- Lymphopenia may impair the ability of the patient to eradicate the virus and be more susceptible to secondary bacterial infections.
- IL-7 is effective in reversing lymphopenia in patients with bacterial sepsis and has also demonstrated efficacy in viral infections
- IL-7 has been used in >500 patients and has been well tolerated with a **minimal side effect** profile.
- Elderly patients have highest mortality and this is likely due to immune senescence; which is improved by IL-7.

Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study

Fei Zhou*, Ting Yu*, Ronghui Du*, Guohui Fan*, Ying Liu*, Zhibo Liu*, Jie Xiang*, Yeming Wang, Bin Song, Xiaoying Gu, Lulu Guan, Yuan Wei, Hui Li, Xudong Wu, Jiuyang Xu, Shengjin Tu, Yi Zhang, Hua Chen, Bin Cao

"Theses abnormalities suggest that 2019-nCoV infection may be associated with cellular immune deficiency"

D.Wang et al.

19 Prevention and treatment of lymphopenia in COVID-19 by IL-7

- Patients infected with SARS-CoV-2 shows lymphopenia. Can be developed to fatal stage depending on severity of lymphopenia.
- Severe lymphopenia may significantly impair the ability of the patient to combat COVID-19 and contribute to increased (make him more) susceptibility to lethal secondary hospital-acquired infections.
- Secondary infections occurred in 58% who received IL-7, compared with 85% of those in the control group.
- IL-7 can be safely administered to critically ill patients with COVID-19 without exacerbating inflammation or pulmonary injury. P. Lattere et al. 2020 JAMA Network

- IL-7 prevents viral and bacterial pathogen induced lymphocyte apoptosis by increasing anti-apoptotic Bcl-2
- IL-7 increases CD4 and CD8 T cell numbers by stimulating cell proliferation

Cytheris' short acting IL-7

3 injections of IL-7 caused significant increase in CD4 and CD8 T cells Levy et al. Clin. Infect. Dis. 55:291; 2012

20 Lymphopenia correction is key to the COVID-19 treatment

Interleukin-7 restores lymphocytes from the lymphopenia induced by COVID-19 infection

Level of T cell counts: survivors vs. non-survivors

Li Tan et al., Signal Transduct Target Ther. 2020 Apr 29;5:61.

Lower T cell counts in elderly

Age over 80 fatality rate (25.3%) due to immune senescence.

- Elders have thymic involution which will cause decrease in T cell's proliferation and diversity decrease.
 - → Exposure to additional viral infection due to compromised immune system which later can be develop to viral sepsis

T cell count by age

(Ref. Naylor K. et al, J Immunol, 2005, 174: 7446–7452.)

fatality rate by age (%)

(Ref. https://coronaboard.kr/en/8 August 2020)

21 What will be after Keytruda?

Bio Blockbusters

TNF-α Blocker

Global Market Size

Humira

\$ 10.2 Bn in 2025 \$ 19.9 Bn in 2019

Enbrel

\$ 4.2 Bn in 2025 \$ 7.2 Bn in 2019

> TNF-α Blocker 30.7bn

PD1, PDL1 Blocker

Global Market Size

Keytruda

\$ 23.2 Bn in 2025 \$ 11.1 Bn in 2019

Opdivo

\$ 13.0 Bn in 2025 \$ 8.0 Bn in 2019

> PD1, PDL1 Blocker 56.5bn

Interleukin 7

Global Market Size

GX-17

\$??? Bn in 2035 \$??? Bn in 2030 \$??? Bn in 2025 \$ 0 in 2019

(Source: 2020 Global Data.2020 medgadget)

22 GX-I7: The only stable and long-acting IL-7 agent

T-cell amplifier

Increases # of T lymphocytes

First-in-class drug ever developed

for lymphopenia

Universal use immunooncology therapeutic medicine

Combination therapy with radio/chemo, targeted, immunotherapy and cell therapy.

Long-acting IL-7 agent

IL-7 + hyFc = Potential blockbuster
long-acting protein drugs

Cancer immunotherapy

Rejuvenating T cells which was exhausted by cancer cells.

T cell count: key to cancer immunotherapy

Combination with GX-I7

Amplifying absolute T-cell counts for patients experiencing low anti-cancer effect due to compromised immune system.

23 The Higher T cell # in Blood, The Better Overall Survival

- Low anticancer efficacy on low lymphocyte count patient
 - → Increased lymphocyte count will benefit higher anti-cancer effect

24 GX-I7: Unlimited potential with Combination Therapies

Chemotherapy & Radiotherapy

The Global Chemotherapy Market \$ 33 B in 2020

Cancer Vaccines

DNA, RNA Peptide, Viral

The Global Cancer Vaccine Market
\$ 12 B in 2025 from \$ 3.3 B in 2017
CAGR of 17.28%

Checkpoint Inhibitor

Anti-PD-1, Anti-PD-L1, Anti-TIM3, Anti-LAG3...

\$ 56.5 B in 2025 from \$ 10.5 B in 2017

CAGR of 20.1%

Cell Therapy

CAR-T / TCR-T

The Global CAR -T cell Therapy Market \$ 8.71 B in 2025 from \$ 0.34 B in 2018 CAGR of 58.52%

Infectious Disease Therapy

The Global infectious disease therapy market \$ 59.3 Bn in 2026 from \$ 47.6 B in 2020 CAGR of 3.7%

(Source : EvaluatePharma World Preview 2020, Mckinsey&Company, , MarketWatch 2020)

25 GX-I7 (NT-I7/ TJ-107): Clinical Trial & Development Timeline

Field	Туре	Treatment	Indication	Preclinical	Phase 1	Phase 2	Phase 3	Conducting company	Partner
	Со	KEYTRUDA [®]	TNBC KDDF KODF KOVAD DEVELOPMENT FLAND		Phase 1b/2			Genexine	MERCK NEGIMMUNETECH
	Со	Avastin	Recurrent GBM	Preclinical				Genexine	
	Со	Temozolomide	GBM		Phase 2			I-MAB	
	Mono		Solid Tumor		Phase 2a			I-MAB	
	Mono	-	GBM		Phase 1/2			NeoImmuneTech	JOHNS HOPKINS UNIVERSITY
Oncology	Со	Temozolomide	GBM		Phase 1/2			NeoImmuneTech	Washington University in St. Louis School, of Medicine
	Со	Tecentriq [®]	High risk skin cancer		Phase 1b/2a			NeoImmuneTech	Roche cancer immunotherapy trials network
	Со	KEYTRUDA [®]	TNBC, Lung, Pancreatic, Colorectal cancer		Phase 1b/2a			NeoImmuneTech	MERCK
	Со	Opdivo®	Gastric, GEJ, and Esophageal Adenocarcinomas		Phase 2			NeoImmuneTech	راًاا Bristol Myers Squibb
	Со	Kymriah [®]	Diffuse large B-cell lymphoma		Phas e 1b			NeoImmuneTech	
1	Mono	-	Idiopathic CD4 ⁺ T Lymphopenia	Under IN	D submission			NeoImmuneTech	
Infectious	Со	Vaccine	Preventative vaccine (Elderly cancer survivors)	Pha	se 1/1b			NeoImmuneTech	NIH NATIONAL CANCER INSTITUTE
Disease	Mono	Standard treatment	COVID-19 infected patients	Ph	ase 1b			Genexine	
	Mono	Standard treatment	COVID-19 infected patients	P	hase 1			NeoImmuneTech	NIH NATIONAL CANCER INSTITUTE

26 Commercialization Plan

Expected: 7 products' BLA submission within 5 years

2021/22	2022/23			202	2024/25	
GX-19 (conditional approval)	GX-I7 (NT-I7) +Keytruda® (conditional approval)	GX-188E +Keytruda® (conditional approval)	GX-I7 (conditional approval)	GX-E4	GX-H9	GX-I7 (NT-I7,TJ107) +Temozolimide
			HOK TON			SE S
Covid 19 DNA Vaccine	TNBC	Cervical cancer	Covid 19	CKD-induced Anemia	Growth Hormone Deficiency	GBM
			Current clinical phase	2		
Phase I/IIa (Korea)	Phase Ib/II (Korea)	Phase II (Korea)	Phase Ib (Korea)	Phase III (SE Asia)	Phase III (China)	Phase II (China)

Global Partnership

28 Investment Highlights

Corporate IPO Strategy & Status

Company Name	Listing Date (Predicted)	IPO Market (Country)	Share	Market cap.
I-MAB Biopharma (CN)	Listed (2020. 01)	Nasdaq (US)	7.4%	\$ 2.68 B
Rezolute (US)	2020.11	Nasdaq (US)	31.1%	
NeoImmuneTech (US)	2021	Kosdaq (KR)	25.4%	
Colmmune (US)	2023	Nasdaq (US)	33.0%	
KG BIO (Indonesia)	2024	Hong Kong (CN)	40.0%	

29 Investment Highlights: "It's just beginning..."

Genexine, from K-Bio representative company to Global biotech leader

- Successful L/O records and progress with First-in-Class pipelines based on innovative platform technologies to global partners.
- Global Open Innovation R&D strategies and Win-Win developments for expansion of pipelines.

The innovative immunotherapy anticancer GX-I7 with explosive potential

- Clinical co-development with the three biggest immune checkpoint blockade companies (MSD, Roche, BMS).
- Continuous expansion of indications: mTNBC,
 High risk skin cancer, GBM etc,

The world's first commercial DNA vaccine

Aim for commercialization of the first
 DNA vaccine for human in the world.

 Development of COVID-19 vaccine as the first from Korea, and the best from the world.

이 종목의 더 많은 IR정보 확인하기