

AptaBio

투자자 유의사항(면책 사항)

본 자료는 압타바이오 주식회사 (이하 "회사") 에 관한 일반적인 정보제공 목적으로만 작성된 참고 자료입니다. 본 자료는 자본시장과 금융투자업에 관한 법률상 증권의 매수 또는 인수에 대한 청약의 권유를 구성하지 아니하며, 본 자료의 어떠한 부분도 본 자료와 관련된 어떠한 계약, 약정 또는 투자결정의 근거가 되거나 그와 관련하여 신뢰될 수 없습니다. 회사의 기업공개 및 상장과 관련하여 이루어지는 보통주의 매수 또는 인수에 대한 청약의 권유는 위 주식의 모집에 관하여 자본시장법과 금융투자업에 관한 법률에 따라 작성되는 투자설명서, 예비투자설명서 또는 간이투자설명서에 따르며 투자판단을 함에 있어 투자설명서, 예비투자설명서 또는 간이투자설명서에 의존하여야 한다는 점을 유의하시기 바랍니다.

회사는 본 자료에 기재된 정보에 대하여 별도의 독립적인 확인 과정을 거치지 아니하였습니다. 본 자료에 포함된 정보나 의견의 공정성, 정확성 또는 완결성과 관련해서는 어떠한 진술 및/또는 보장도 제공되지 아니하며, 본 자료에 포함된 정보나 의견의 공정성, 정확성 또는 완결성에 관하여 신뢰를 하여서도 아니 됩니다. 본 자료에 포함된 정보는 본 자료 제공 당시의 상황에 기초하여 해석되어야 하며, 본 자료 제공 이후의 변화를 반영하도록 업데이트 되지 않을 것입니다.

회사 및 계열회사, 그 임직원 및 자문사 등 회사와 관련된 어떠한 자도 고의 또는 과실 여부를 불문하고 본 자료 및/또는 그 기재내용을 이용함으로 인하여 발생하거나 기타 본 자료와 관련하여 발생하는 어떠한 손해에 대해서도 민사·형사 및 행정상의 책임을 일체 부담하지 아니합니다.

본 자료는 장래에 관한 회사의 예측을 반영하는 정보(이하 "예측정보")를 포함하고 있습니다. 이러한 예측정보는 회사가 통제할 수 없는 미래에 관한 가정들에 근거한 것으로서 관련 예측정보에 의하여 예정된 바와 다른 결과가 초래될 위험 및 불확실성이 있습니다. 회사는 예측정보와 관련하여 본 자료 제공 이후에 발생하는 새로운 변경사항을 업데이트할 의무를 부담하지 않습니다. 본 자료의 전부 또는 일부는 어떠한 방식으로도 분리되거나, 재생산되거나, 재분배되어서는 아니 되며, 본 자료에 포함된 정보는 공지의 사실이 되기 전에는 기밀로 취급되어야 합니다.

본 자료를 제공받음으로써 귀사(하)는 전술한 제한사항에 구속됨에 동의하는 것으로 간주되며, 추후 본 자료를 회사에 반환하는 경우에도 전술한 제한사항에 따른 구속은 그대로 유 지됩니다.

INVESTOR RELATIONS 2019

Contents

Prologue

Chapter 01. **Industry Overview**

Chapter 02. **Technology Overview**

Chapter 03. Core Competitiveness

Chapter 04. Business & Quantum Jump Strategy

Appendix

Prologue

- 01 Corporate Identity
- 02 **회사 경영진**
- 03 **과학자문위원**
- 04 오픈이노베이션 글로벌 네트워크
- 05 **회사 연혁**

01. Corporate Identity

플랫폼 기반 First-in-class 신약개발 전문기업

AptaBio

Creative Platform

- 세계 최초 압타머-약물 복합체 기술
- 세계 최초 specific hNOX-HTS assay
- 확장성 높은 플랫폼 기술 보유

High Unmet Needs

- Apta-DC 플랫폼
 - 난치성 항암 시장 공략
- hNOX-HTS 플랫폼
 - 전문약이 없는 당뇨합병증 시장 공략

Open Innovation

- 학계 우수연구자와의 협력연구
- Early stage 라이센싱 & 공동개발
- 파트너사의 핵심역량 활용
- 신약개발 성공 경험자의 전문성

02. 회사 경영진

CEO

대표이사 이수진

25년간 연구개발 경력 Apta-DC 플랫폼 개발

- JW 중외제약 신약연구실장
- Chugai-Roche 공동연구 Scientific Committee
- 아주대학교 의약화학 이학박사

СТО

사장 **문성환**

30년간 연구개발 경력

- BJ 한미 연구센터/한미약품 연구소장
- JW 중외 C&C 신약연구소 소장
- Molecumetics, USA Research Scientist
- Suntory Institute, Japan (Post Doc)
- POSTECH 생물의약화학 이학박사

POSTECH

신약개발 전문위원

전문위원 김순회

30년간 신약개발 경력 (KFDA 신약 승인 3건)

- 동아ST㈜ 연구본부장
- 동아제약(취) 연구본부장
- 서울대학교 약학대학 약학박사
- 서울대학교 약학과 학사

임상개발 전문위원

CMO **차대룡**

30년간 임상개발 경력

- 고려대학교병원 소화기내과 교수
- 서울 아산병원 소화기내과 교수
- Vanderbilt Univ., USA 교환교수
- UCLA Medical Center fellow
- 고려대학교 의과대학 내과학박사

03. 과학자문위원(SAB)

SAB Chair 배윤수

연구개발 경력 30년

- 이화여자대학교 생명과학과 교수
- NIH, USA 방문 연구원
- KAIST 지질 생화학 이학박사

CMO **차대룡**

임상개발 경력 30년

- 고려대학교병원 소화기내과 교수
- 서울 아산병원 소화기내과 조교수/부교수
- 고려대학교 의과대학 내과학 박사 MD

강원준

연세대학교 의과대 교수

- 서울대학교 의과대학 조교수
- 서울대학교 의과대 박사 MD

도경오

영남대학교 의과대 교수

- Purdue Univ., USA 교환 교수
- 경북대 의과대 박사 MD

장영태

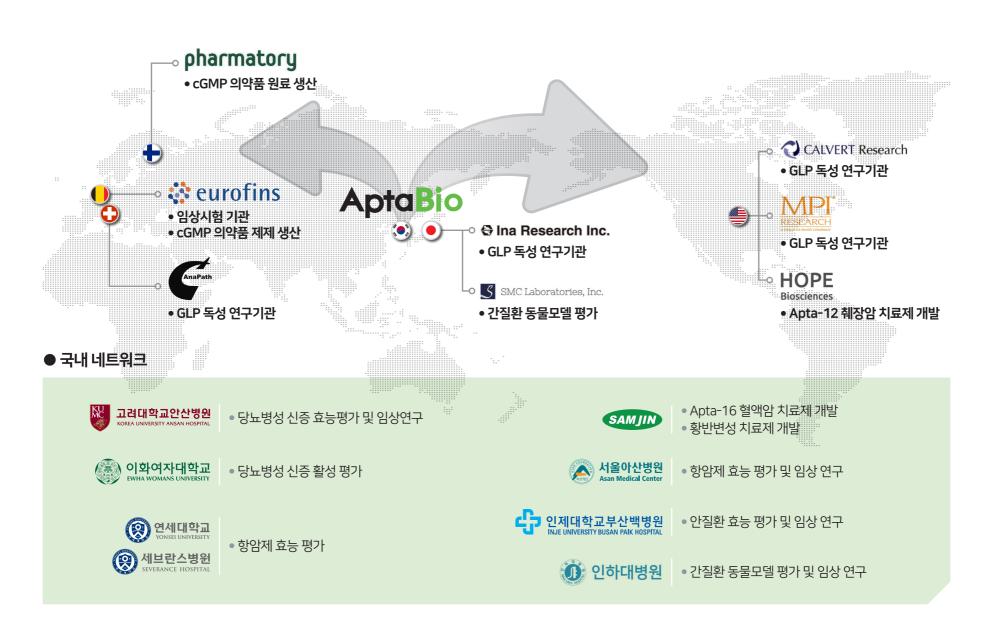
POSTECH 화학과 교수

- NewYork Univ. 화학과 교수
- Singapore 국립대 교수
- POSTECH 박사

공영대

동국대학교 화학과 교수

- 동국대학교 화학과 교수
- 한국 화학연구원 Combichem 연구단장
- 동경대 화학과 박사


윤성화

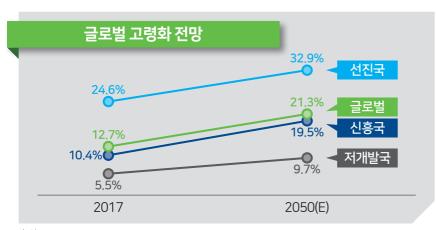
아주대학교 분자과학기술학과 교수

- 아주대학교 응용화학생명공학과
- Florida Univ. 화학과 박사

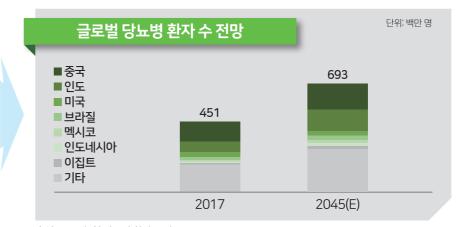
04. 오픈이노베이션 - 글로벌 네트워크

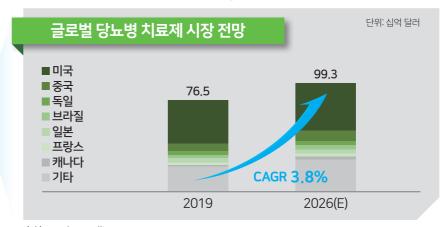
Chapter 01

Industry Overview


- 01 당뇨합병증 치료제 시장 전망
- 02 당뇨합병증 치료제 개발 동향
- 03 **항암제 시장 전망**
- 04 **차세대 항암제 개발 동향**

01. 당뇨합병증 치료제 시장 전망


글로벌 인구 고령화에 따른 당뇨병/당뇨합병증 환자 수 지속 증가


출처: UN, World Population Ageing 2017

출처: GlobalData

출처: IDF, 제2형 당뇨병 환자수 기준

출처: Mordor Intelligence

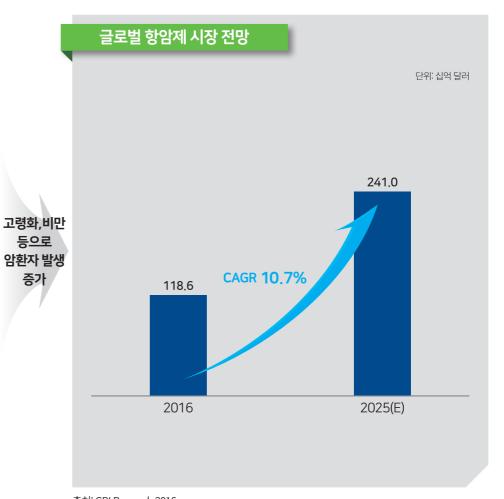
02. 당뇨합병증 치료제 개발 동향

높은 시장 성장성으로 당뇨병/당뇨합병증 치료제에 대한 글로벌 빅파마들의 높은 관심 지속

● 글로벌 라이선스 아웃 최근 사례

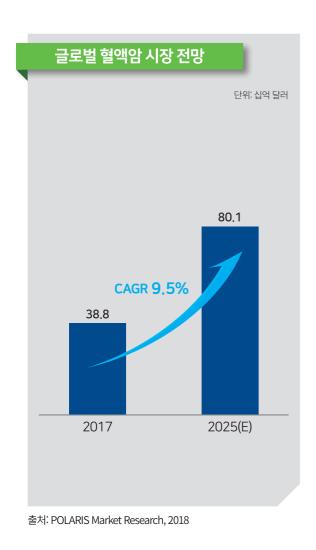
적응증	연도	개발	기술도입	라이선스 아웃 단계	총 계약규모
	2016	ChemoCentryx	Vifor	Phase 2	6.75억 달러 (Upfront 0.5억 달러)
당뇨병성 신증	2017	Bird Rock Bio	Johnson & Johnson	Phase 1	N/A
	2018	Epigen Bioscience	Novo Nordisk	Preclinical	2억 달러
	2015	Pharmaxis	Boehringer Ingelheim	Phase 1	6억 달러 (Upfront 0.39억 달러)
	2015	Phenex	Gilead	Phase 2	4.7억 달러
NASH*	2016	Akarna	Allergan	Preclinical	N/A (Upfront 0.5억 달러)
-	2016	Tobira	Allergan	Phase 2	17억 달러 (Upfront 3.3억 달러)
	2019	Yuhan	Gilead	Preclinical	7.85억 달러
	2015	Hanmi	Sanofi	Phase 1	39억 유로
당뇨병 치료제	2015	Hanmi	Janssen	Phase 1	9.15억 달러
-	2018	Dong-A	NeuroBo	Phase 2	1,920억원

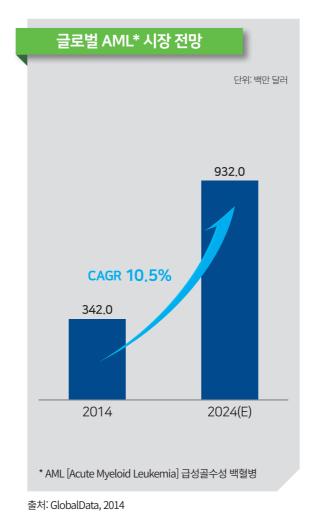
^{*} NASH[Non-Alcoholic Steatohepatitis] 비알코올성 지방간염

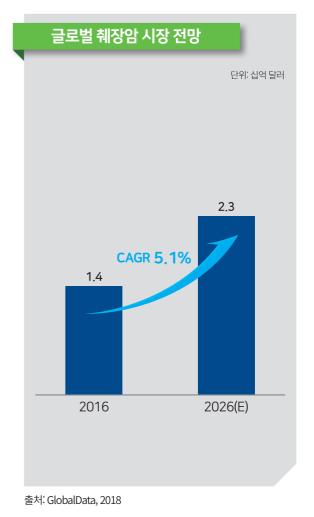

출처: Evaluate Pharma 2018, 인터넷 기사 인용

03. 항암제 시장 전망(1)

글로벌 항암제 시장 성장률(10.7%)은 의약품 시장 성장률(6%)의 2배




출처: GBI Research 2016


03. 항암제 시장 전망(2)_주요타겟 시장

Unmet Needs가 높은 난치성 항암시장 타겟 제품 개발

04. 차세대 항암제 개발 동향

기존 항암 치료법의 한계로 차세대 혁신 신약 개발 증가 추세이며 라이선스 아웃 활발 Apta-DC는 Unmet Needs 충족 가능한 First-in-Class 차세대 항암제로서 높은 상업적 가치 기대

● 글로벌 라이선스 아웃 최근 사례

적응증	연도	개발사	기술도입	적응증	임상 단계	총 계약규모
	2015	Xencor Inc	Amgen Inc	다발성 골수종	비임상	18억 달러
	2016	Innate Pharma SA	Sanofi	이중특이항체	임상1상	4억 달러
	2016	Macro Genics	Janssen	고형암	비임상	7억 달러
항암제	2017	Zymework Inc	Janssen	고형암	임상1상	15억 달러
	2017	Servier	Pieris	이중항체	비임상	18억 달러
	2017	Merck	F-Star	면역항암 항체	비임상	12억 달러
	2018	Seattle Genetics	Pieris	면역항암 항체	공정개발	12억 달러
	2009	Archemix	GSK	RA, 항염증제	공정개발	14억 달러
	2010	Dicerna	Kyowa Hakko	항암 · 면역	비임상	14억 달러
올리고핵산압타머	2012	Tekmira	Alnylam	siRNA전달시스템	비임상	1.75억 달러
	2014	ОРНТНОТЕСН	NOVARTIS	황반변성	임상2상	10억 달러
	2015	OPHTHOTECH	Roche	황반변성	임상2상	10억 달러

04. 차세대 항암제 개발 동향_Unmet Needs 충족

Unmet Needs 충족 가능한 차세대 항암제 개발 필요성 증대 및 면역항암제와 병용 치료 가능성 높음

낮은 치료율 / 높은 재발률 / 내성 발현 / 부작용 및 독성

1세대 항암제

- 암세포 뿐만 아니라 정상세포도 공격
- 정상세포 공격에 따른 높은 부작용 및 독성

2세대 표적항암제

- 표적인자 선택적 공격
- 특정환자만 적용 가능
- 내성발생

AptaBio

차세대 표적항암제

- 신규표적
- 선택적 암세포 공격
- 내성암에도 효과적인 항암 작용

기존 치료제 Unmet Needs 충족

항암 병용요법 확대

3세대 면역항암제

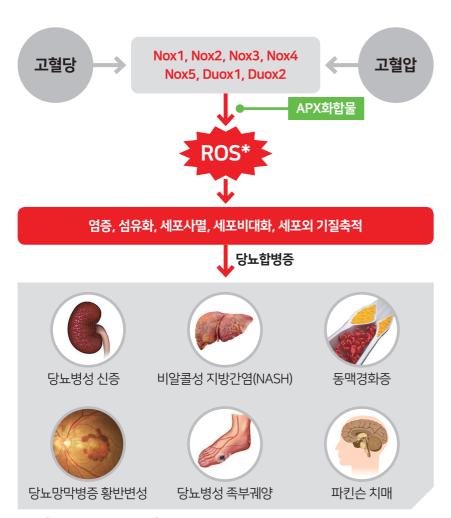
- 면역체계에 의한 암세포 공격
- 제한된 반응률
- 고가의 치료제

Chapter 02

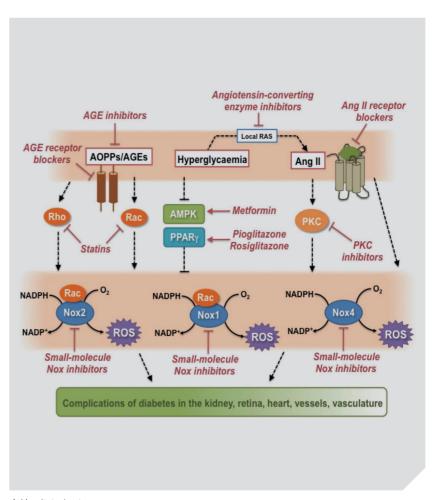
Technology Overview

- 01 Platform 기반 신약 파이프라인 개요
- 02 NOX Platform
- 03 **Apta-DC Platform**

01. Platform 기반 신약 파이프라인 개요


독창적인 플랫폼 기술에 기반한 First-in-Class 혁신 신약 개발

플랫폼 기술	NO	ЭX	Apta-DC
작용기전		화성 스트레스 조절로 I유화 억제	Nucleolin 과발현 암세포 타겟
특징	세계 최초 NC	DXs HTS기술	세계 최초 압타머-약물 복합체 기술
적응증		합병증 병증·NASH·동맥경화)	난치성 암 (혈액암·췌장암·방광암·간암)
파이프라인 현황	총	5건	총 2건
현재		당뇨병성 신증) (wet-AMD)	비임상 (혈액암)
2019년 계획	임상2상 임상1/2상 (당뇨병성 신증 · NASH) (wet-AMD)		임상1/2상 (혈액암)

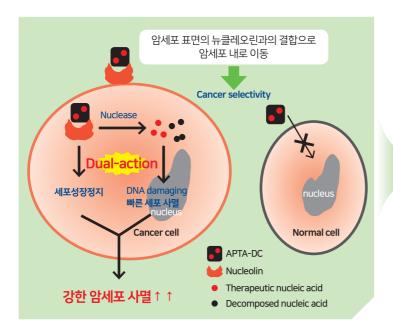

02. NOX Platform_작용기전

NOX 기전 저해로 산화 스트레스 조절에 의한 First-in-Class 당뇨 합병증 치료제 개발

^{*} ROS [Reactive Oxygen Species] 활성화산소

출처: Clinical Science 2013

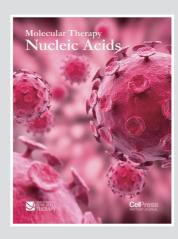
03. Apta-DC Platform_작용기전


AptaBio

- 저분자 화합물 및 항체로 접근 어려운 표적 단백질 공략
- 세계 최초 Aptamer-Drug Conjugation 기술
- Unmet need 충족: 암세포 선택적·이중 항암 작용·내성 극복·우수한 생체 내 안정성
- 난치성 암의 'First-in-class drug' 원천 기술

Mode of Action #1

- 혈액 내 안정성 지속
- 효율적인 약물 전달


Mode of Action #2

- 암세포 선택적
- 높은 세포 투과도
- 이중항암작용: 부작용 경감, 항암효능 높임

Mode of Action #3

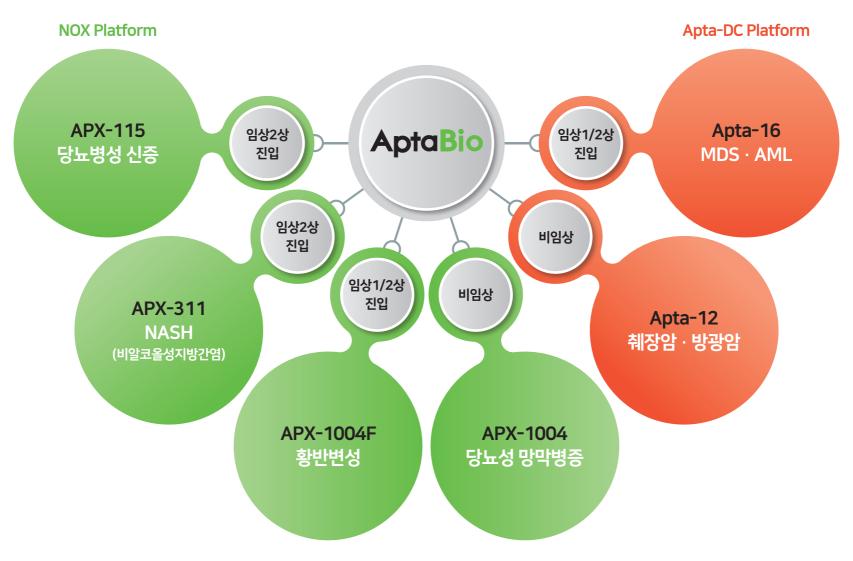
● 기존 항암제 내성 극복

2018 Molecular Therapy 발표

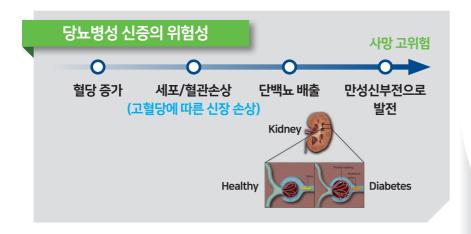
압타머와 치료약물의 융합을 통한 선택적 암세포 사멸

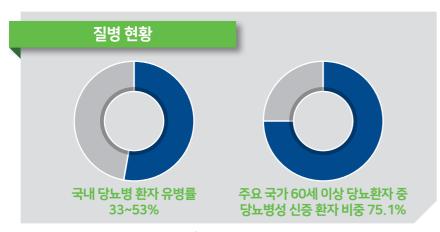
Chapter 03

Core Competitiveness

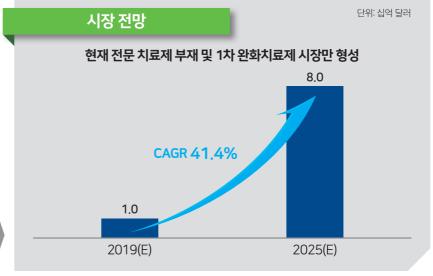

- **파이프라인 현황**
- **당뇨병성 신증 치료제 (APX-115)**
- **비알코올성 지방간염 치료제 (APX-311)**
- **황반변성 치료제 (APX-1004F)**
- **혈액암 치료제 (Apta-16)**
- 06 강력한 지식재산권

01. 파이프라인 현황


핵심 플랫폼 기술을 바탕으로 주요 혁신 신약 파이프라인 확보

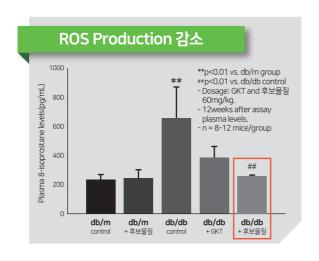


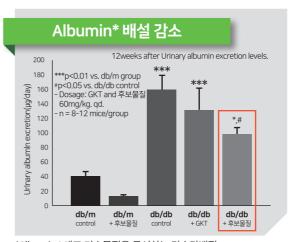
02. 당뇨병성 신증 치료제 (APX-115)

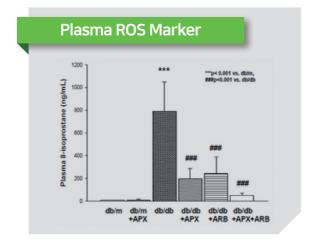


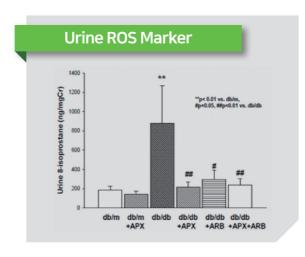
전문 치료제 부재에 따른 First-in-Class 혁신 신약 수요 확대로 향후 시장 선점 기대

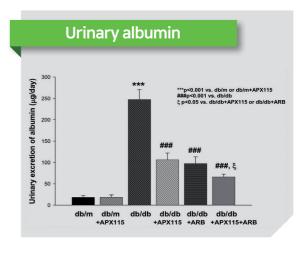
출처: 대한당뇨병학회2017, DataMonitor / 주요국가: 미국, 일본, 유럽 주요 5개국



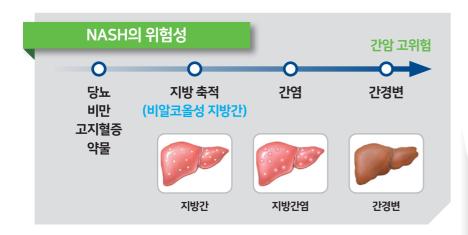

02. 당뇨병성 신증 치료제 (APX-115)

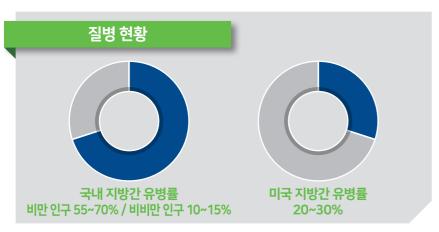

임상2상 평가지표 효능 확인, 경쟁약물(GKT) 대비 우수, 1차 치료제와 병용 투여 시 상승 효과 확인


Laboratory Investigation-Nature(2017) 97, 419-431

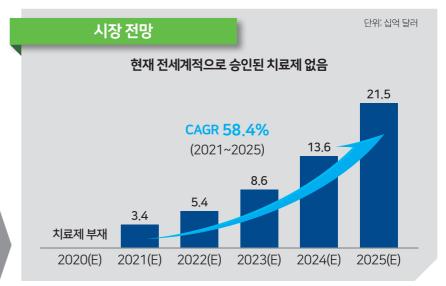


*Albumin: 세포 기초물질을 구성하는 단순단백질



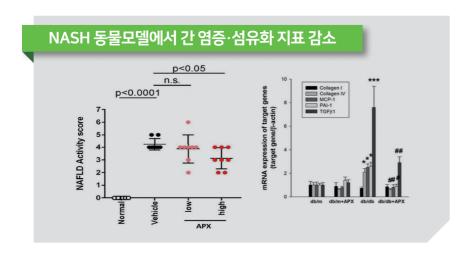


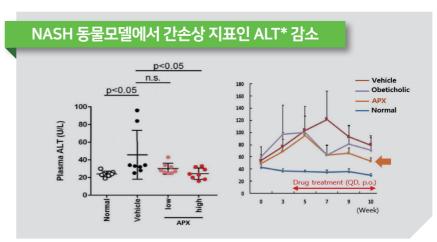
03. 비알코올성 지방간염 치료제 (APX-311)



전문 치료제 부재에 따른 First-in-class 혁신 신약 수요 확대로 향후 시장 선점 및 라이선스 아웃 기대

출처: Market Data Forecast 2018


Unmet Needs

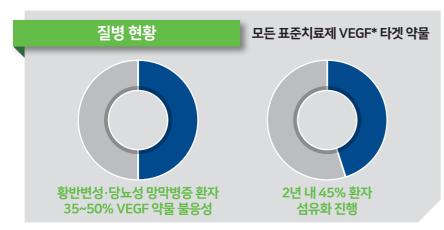

염증 감소 및 간 섬유화 감소를 통한 조직학적 치료효과 필요 [FDA 가이드라인]

03. 비알코올성 지방간염 치료제 (APX-311)

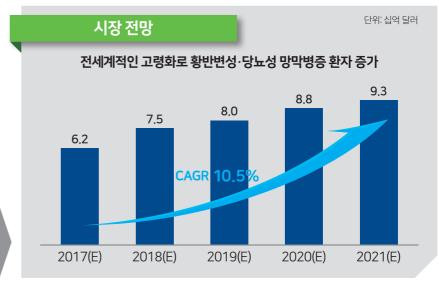
NASH 동물모델에서 우수한 효능 확인 및 염증·섬유화 지표 감소 효과 확인

* ALT[Alanine Aminotransferase) 알라닌아미노전달 효소

● 임상 1상 결과 요약: 안전성 확보


임상연구	임상결과
Part A (단회 투여, SAD)	단회투여에서 약물과 상관있는 부작용 나타나지 않음
Part B (반복 투여,MAD)	반복투여에서 약물과 상관있는 부작용 나타나지 않음
Part C (음식물 섭취 전후)	음식물에 의한 약물에 미치는 효과검증
Part D (약물상호작용)	약물 상호작용 검증

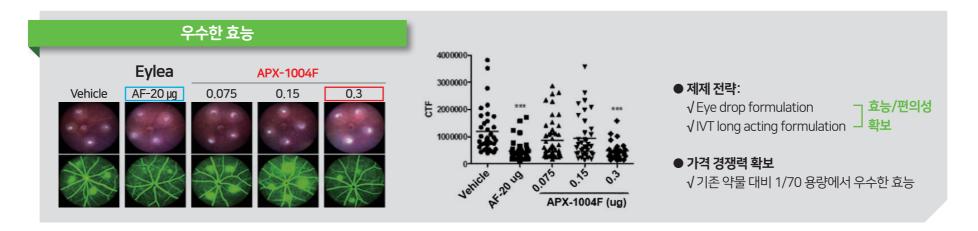
04. 황반변성 치료제 (APX-1004F)



폭발적인 유병률 대비 제한적인 치료제(VEGF 기전 불응성) 시장의 Unmet Needs 충족 기대

*VEGF[Vascular Endothelial Growth Factor] 혈관내피성장인자

출처: GlobalData 2014, 글로벌 황반변성 시장


Unmet Needs

- **새로운 작용기전(First-in-class) 약물 필요** (염증·섬유화·신생혈관 생성 억제)
- IVT 주사 주기 개선(long acting formulation)
- 약가 경쟁력 확보(Eylea \$1,840/vial)
- 치료 편의성 개선(Eye drop formulation)

04. 황반변성 치료제 (APX-1004F)

기존 치료제 (VEGF: Eylea) 와 비교시 우수한 효능 확인, 환자에 대한 투약 편의성 개선

● 비임상 시험 결과(현시점): 안전성 확보

	GLP 시험항목	결과
단회 투여	A single-dose toxicity study in rat	No issues
반복투여	A repeated-dose toxicity study in rat	No issues
건축 무어	A repeated-dose toxicity study in dog	No issues
	Central nervous system in rat	No effects
안전성 약리	Respiratory system in rat	No effects
인선경 막다	Cardiovascular system in dog	No issues
	hERG assay	No issues
유전독성	in vivo micronucleus in rat	Negative

^{*}NOAEL (no observed adverse effect level): 무독성량. 인체에 유해한 영향을 미치지 않는 최대 투여량을 의미하는 약학용어

05. 혈액암 치료제 (Apta-16)

단위: 십억 달러

First-in-Class 혁신신약으로 난치성 치료제 시장의 Unmet Needs 충족 가능

MDS·AML 개요

MDS

Myelodysplastic Syndrome

- 혈액암
- 골수 이상에 따른 비정상적 백혈구 증가
- 노년층 높은 발생율

AML

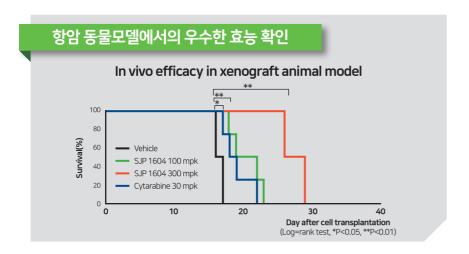
Acute Myeloid Leukemia

- 급성골수성 백혈병
- 골수성 백혈구 세포 변이에 따른 질환
- 정상적인 골수 기능 마비로 심각한 면역 저하 및 출혈

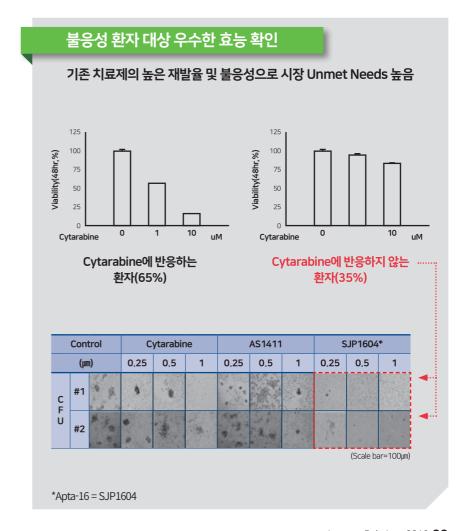
시장 전망 전세계적인 고령화로 환자 증가 MDS 시장 전망 AML 시장 전망 0.9 80.1 **CAGR 9.5% CAGR 10.5%** 38.8 0.3 2025(E) 2017 2014 2024(E) AML 출처: GlobalData 2015, 주요 7개 국가 기준(미국, 일본, 유럽 5개국)

질병 현황 5년내 생존율 10% FLT 표적항암제 투여 후 50% 재발율

Unmet Needs

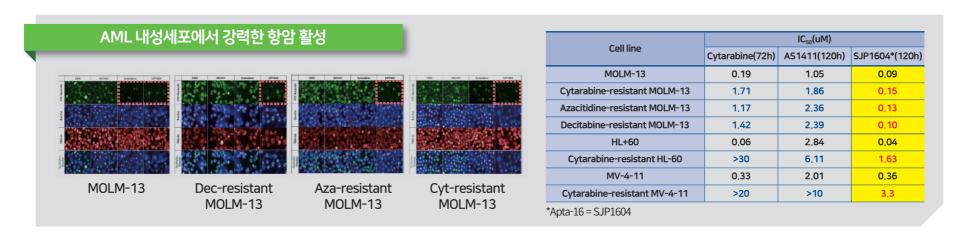

- 낮은 생존율 및 치료율 개선 필요
- 새로운 작용기전(First-in-Class) 약물 필요
- 항암제의 부작용 및 내성 극복 필요
- FLT 타겟 불응성 환자를 위한 신규 기전 필요

05. 혈액암 치료제 (Apta-16)


기존 치료제에 반응하지 않는 환자에서 강력한 효능 확인, 다양한 치료제 병용투여시 시너지 효과 확인

AACR 2019 Poster 발표

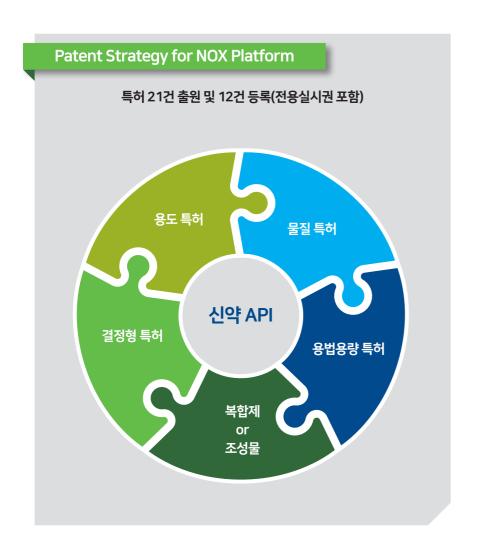
병용투여에서 시너지 항암 효능 확인

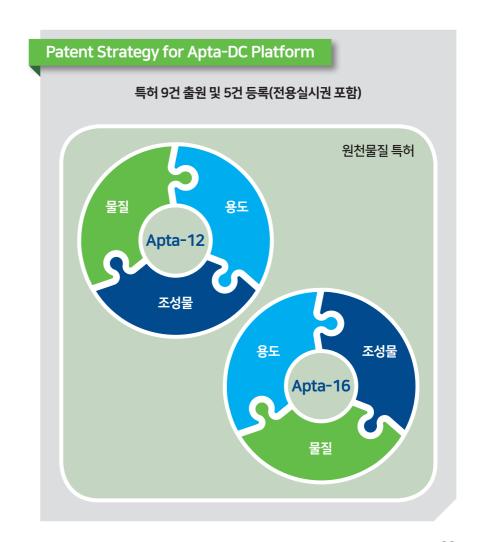

Drug		120h IC50(µm)				
		MOLM-13	Cytarabine- resistant MOLM-13	Decitabine- resistant MOLM-13	Azacitidine- resistant MOLM-13	
	SJP1604	0.190	0.630	0.582	0.772	
Single	Decitabine	2.64	>7.2	>7.2	>7.2	
treatment	Azacitidine	2.51	7.190	6.130	>25.9	
	Venetoclax	1.128	3.403	3.496	7.054	
	*SJP1604 +Venetoclax	0.022 (0.107)	0.078 (0.374)	0.212 (1.016)	0.099 (0.474)	
Combination treatment	*Decitabine +Venetoclax	0.193 (0.145)	5.633 (4.225)	2.535 (1.901)	7.125 (5.344)	
	*Azacitidine +Venetoclax	0.081 (0.219)	0.930 (2.510)	0.505 (1.364)	4.811 (12.979)	

05. 혈액암 치료제 (Apta-16)_안전성 확보

1차 치료제 내성 극복 및 비임상 안전성 시험 결과 높은 안전성이 확인되어 임상 경쟁력 확보

● 비임상 시험 결과(현시점): 안전성 확보


	GLP시험항목		
단회 투여	A single-dose toxicity study in rat	No issues	
반복 투여	A repeated-dose toxicity study in rat		
한속 무어	A repeated-dose toxicity study in dog	No issues	
	Central nervous system in rat	No effects	
나다 나타니	Respiratory system in rat	No effects	
안전성 약리	Cardiovascular system in dog	No effects	
	hERG assay	No effects	
항원성	Antigenicity test in guinea pig	Negative	


^{*}NOAEL (no observed adverse effect level): 무독성량. 인체에 유해한 영향을 미치지 않는 최대 투여량을 의미하는 약학용어

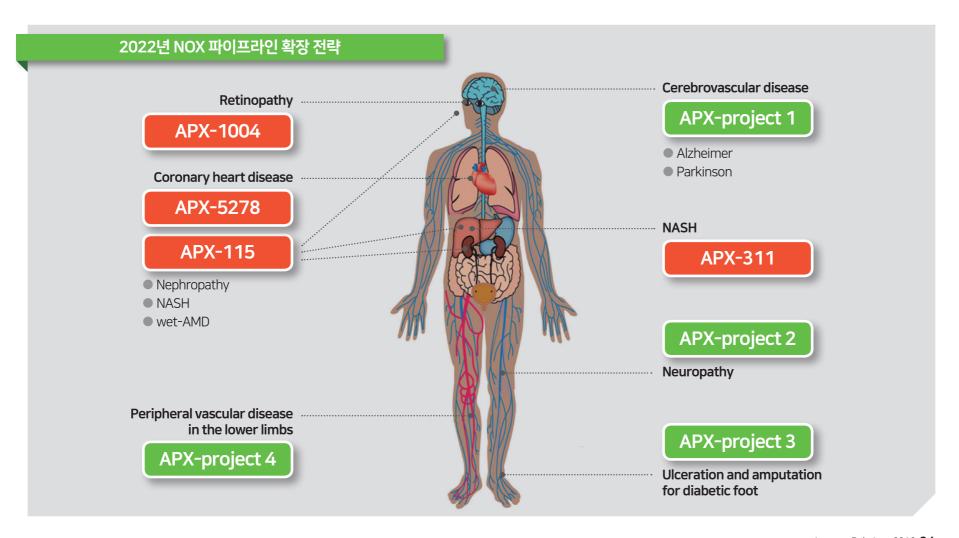
06. 강력한 지식재산권

AptaBio

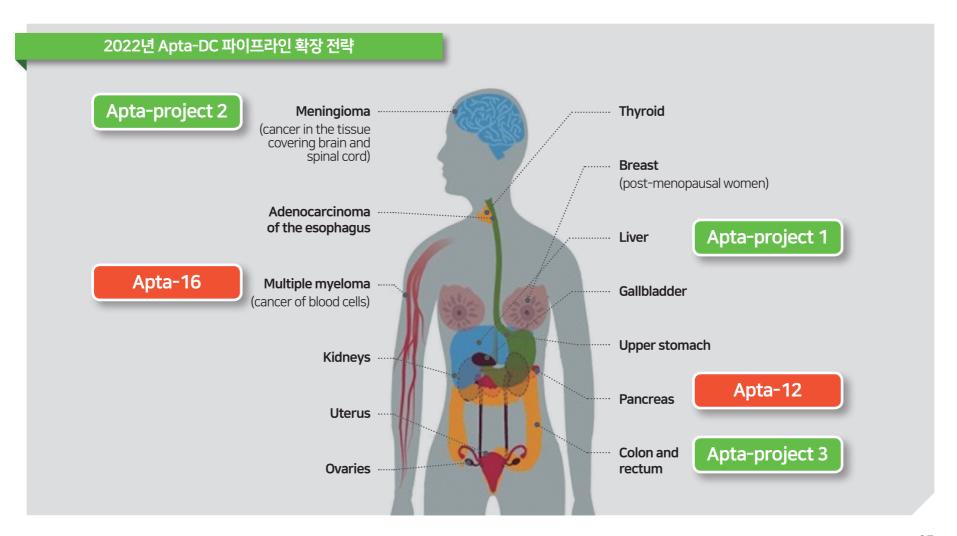
원천기술에 대한 특허 보호 및 개발 품목의 광범위한 지식재산권 확보로 높은 진입장벽 구축

Chapter 04

Business & Quantum Jump Strategy


- 01 플랫폼 기술의 확장성
- 02 파이프라인 로드맵
- 03 사업화 성과 및 라이선스 아웃 전략
- 04 **회사 성장 전략**
- 05 Investment Highlight

01. NOX 플랫폼 기술의 확장성(1)


NOX 타겟별 선택적 저해제 개발을 통한 적응증 확장 및 지식재산권 추가 확보

01. Apta-DC 플랫폼 기술의 확장성(2)

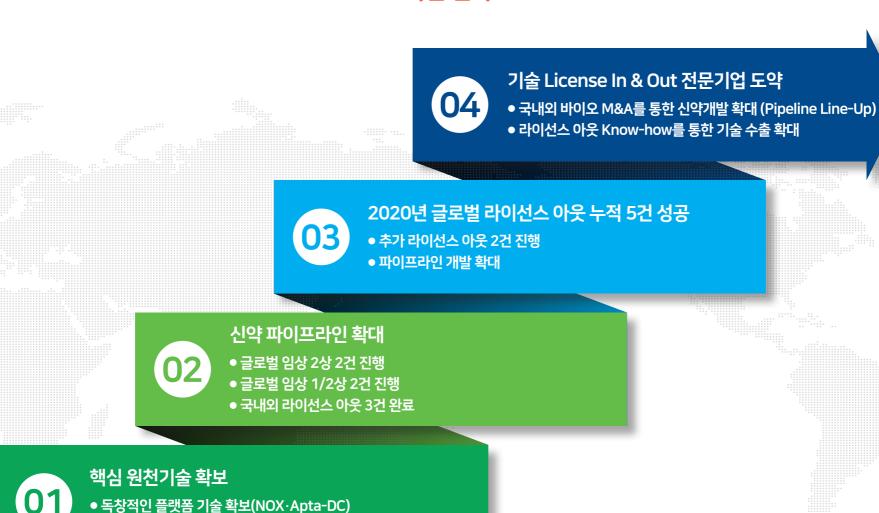
Aptamer 와 약물 결합으로 새로운 치료용 압타머 조합 발굴 → 파이프라인 확대 및 신규 지식재산권 확보

02. 파이프라인 로드맵

플랫폼 기술을 바탕으로 혁신 신약 파이프라인 9개 확보(뇌혈관질환, 간암치료제 추가)

03. 사업화 성과 및 라이선스 아웃 전략

단계별 사업화 성과 차별화: 라이선스 아웃·공동연구 → 전략적 제휴 → 신약 발매



04. 회사 성장 전략

● 원천기술에 대한 지식재산권 확보

First-in-Class 혁신 신약 Global Leader

Platform 기술

- 확장성이 용이한 독창적인 플랫폼으로 탄탄한 파이프라인 구축
- 강력한 지식재산권 전략으로 유사 기술 진입장벽 높음

글로벌 개발 파이프라인

- First-in-Class의 블록버스터급 난치성 질환 혁신신약 파이프라인 운영
- 2019년 본격적인 임상 개발 진행 (임상2상 2건·임상1/2상 2건 진입)
- 라이선스 아웃 3건 보유 및 2020년까지 총 5건 라이선스 아웃 목표

높은 시장성

- 전문 치료제 부재/Unmet Needs 극복한 파이프라인 개발로 글로벌시장 공략
- 대상 치료제(당뇨합병증·항암제)의 환자수 증가로 급격한 성장 추세

혁신 신약 개발 전문가

- 연구·임상·허가·라이센싱 등 신약개발 전 분야 전문가 네트워크 보유
- 글로벌기업과의 라이선스 아웃 경험을 바탕으로 높은 라이센싱 협상력 보유

Appendix

01 공모 개요

02 **요약 재무제표**

03 **회사 개요**

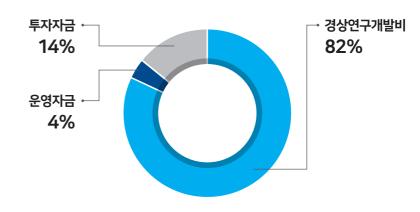
04 **주요 용어설명**

01. 공모 개요

● 공모 개요

(증권신고서 제출일 기준)

공모주식수	2,180,000 주
공모희망가액	21,000원 ~ 25,000원
총공모금액(예정)	458 억원 ~ 545 억원
상장주식수(예정)	10,896,019 주
시가총액(예정)	2,288 억원 ~ 2,724 억원
대표주관증권사	삼성증권 / 미래에셋대우


● 공모 일정

수요예측일	2019년 05월 28일(화) ~ 29일(수)
청약일	2019년 06월 03일(월) ~ 04일(화)
납입일	2019년 06월 07일(금)
상장예정일	2019년 06월 12일(수)

● 공모 후 주주구성

	주주명	주식수(주)	지분율(%)	보호예수 기간
	최대주주 등	3,814,000	35.00	3년 (지분율 34.14%) 1년 (지분율 0.86%)
	벤처금융 등 전문투자자	941,600	8.64	1년 (지분율 0.37%) 1개월 (지분율 8.27%)
유통 제한	우리사주조합	85,000	0.78	1년
	주관사 의무보유분	47,619	0.44	3개월
	소계	4,888,219	44.86	
	기존주주	3,912,800	35.91	
유통 가능	공모주주	2,095,000	19.23	
	소계	6,007,800	55.14	
합계		10,896,019	100.00	

● 공모자금 사용계획

02. 요약 재무제표

● 재무상태표

단위: 백만원

구분	2016	2017	2018	2019.1Q
유동자산	12,498	10,656	19,946	18,877
비유동자산	323	346	382	531
자산총계	12,821	11,002	20,328	19,407
유동부채	312	22,939	1,176	1,671
비유동부채	12,975	19,601	841	1,028
부채총계	13,287	42,540	2,017	2,699
자본금	226	226	4,334	4,334
자본잉여금	100	100	49,991	50,183
이익잉여금	(792)	(31,864)	(36,013)	(37,810)
자본총계	(466)	(31,538)	18,312	16,708

● 손익계산서

단위: 백만원

구분	2016	2017	2018	2019.1Q
영업수익	597	300	1,454	33
영업비용	1,639	2,437	4,816	1,866
영업이익	(1,042)	(2,137)	(3,362)	(1,833)
영업외수익	1,343	118	300	94
영업외비용	668	29,104	1,001	58
법인세차감전순이익	(368)	(31,123)	(4,063)	(1,797)
당기순이익	(368)	(31,123)	(4,063)	(1,797)
기타포괄손익	(17)	51	(86)	-
총포괄이익	(385)	(31,072)	(4,149)	(1,797)

03. 회사 개요

● 회사 소개

(증권신고서 제출일 기준)

	(8000-11-11-11-11-11-11-11-11-11-11-11-11-
회사명	압타바이오 주식회사
대표이사	이수진
설립일	2009년 07월 24일
자본금	43.3억 원
사업영역	글로벌 혁신신약 개발
주요제품	당뇨합병증 · 난치성 항암제 등
임직원수	19명(R&D 9명)
본사주소	경기도 용인시 기흥구 흥덕1로 13
홈페이지	www.aptabio.com
임직원 수 본사주소	19명(R&D 9명) 경기도 용인시 기흥구 흥덕1로 13

● 연구소 네트워크

주요 연구내용	연구소 위치
기업부설연구소	아주대학교
Apta-DC	용인 본사
항암제	연세 세브란스 암센터
NOX Bio	이화여자대학교 생명과학과
NOX 안과	인제대학교 백병원
NOX 당뇨합병증	고려대학교 안산병원

● 조직도

04. 주요 용어설명

용어	내용	
NOX	NADPH (Nicotinamide adenine dinucleotide phosphate) oxidase 의 약자	
NOX(효소)기능	활성산소 (ROS) 생성 조절 효소	
활성산소(ROS)	염증 또는 섬유화를 유발시키는 원인	
효소	생체 내에 존재하는 물질로 복잡한 여러 가지 화학반응을 촉진하는 촉매제	
압타머	안정된 3차 구조로 특정 분자에 특이적으로 강하게 결합할 수 있는 핵산 특이적으로 결합을 제공하는 기능 때문에 항체를 대체하는 기술로 알려짐	
Nucleolin	세포의 핵내와 세포면을 왕복하는 셔틀 단백질로 암세포 표면에 다량 포함되어 있는 단백질	
항체	면역반응으로 항원에 대항하기 위해 생체 내에서 만들어지는 단백질	
당뇨병성 신증	미세혈관에 발생하는 당뇨 합병증으로 신장이 손상되어 단백뇨와 부종, 고혈압이 동반되어 만성신부전으로 진행되는 질환	
NASH (비알코올성 지방간염)	비만, 당뇨, 고지혈증의 원인으로 간에 지방이 과도하게 축적되어 만성 간염 → 간경변 → 간암으로 발전하는 질환	
당뇨성 망막병증	당뇨병으로 인한 안구의 모세혈관 파괴로 시각 세포가 손상되어 시력 상실을 일으키는 질환	
황반변성	망막의 중심부에 위치한 황반이 노화, 유전적 요인, 독성, 염증 등으로 인해 기능이 떨어지면서 시력이 감소되고 심한 경우 실명에 이르게 되는 질환	

압타바이오 주식회사 I 경기도 용인시 기흥구 흥덕1로 13 Tel: 031-660-7310 I Fax: 031-211-6697 I www.aptabio.com