글로벌바이오기업

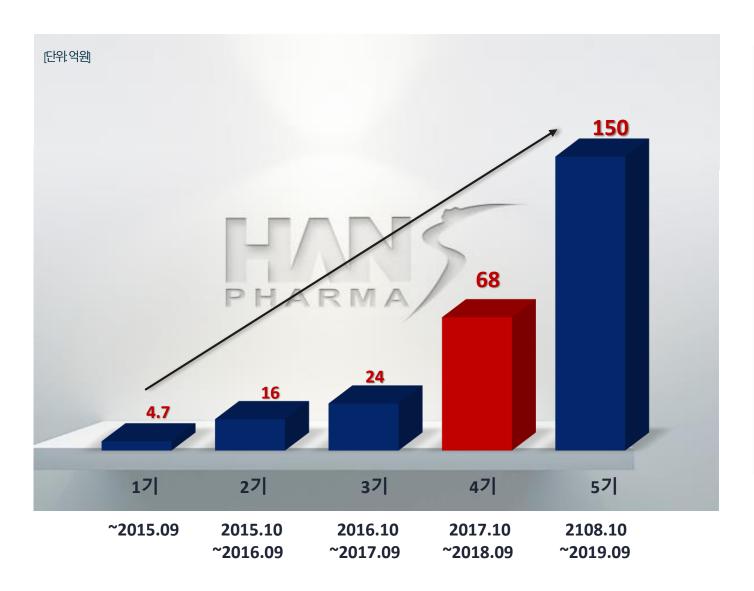
한스바이오메드㈜

2018 기업설명회

www.hansbiomed.com

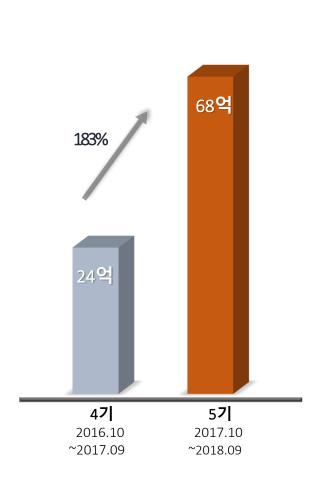
HansBiomed Corp.

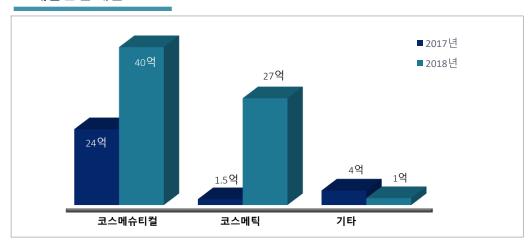
HansBiomed Corp 217

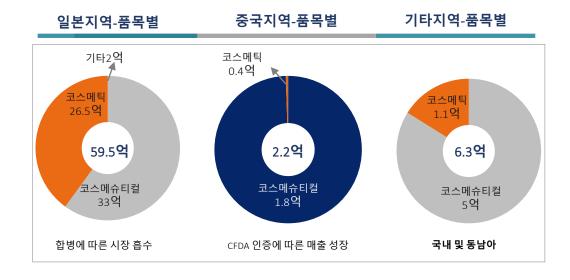

Global Bio Renaissance

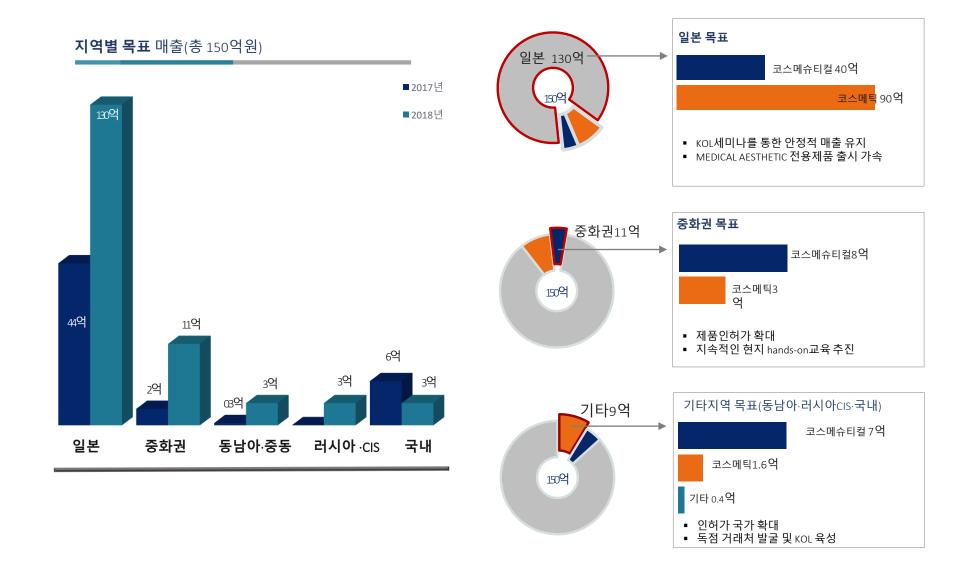
21기 560억 달성

Hans Pharma 1~4기 까지의 매출액 및 5기 예상 매출액

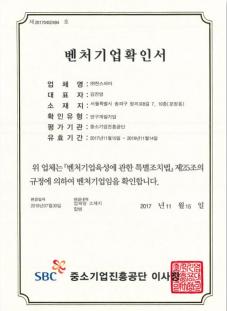





Hans Pharma - 5기(2017.10~2018.09) 매출의 제품군별/지역별 분석현황


제품군별 매출

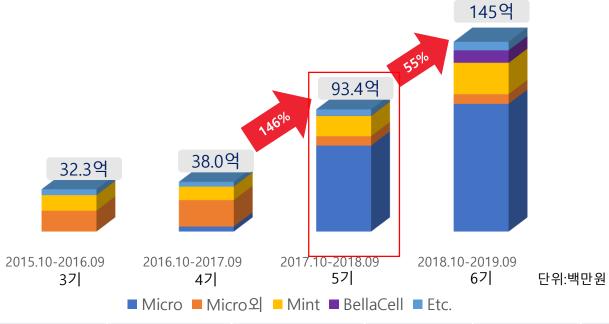
5기 매출 목표 **150억원**



Hans Pharma - 기업부설연구소 설립 (2018년 5월)

Neuro stem cell / Exosome R&D Center (연구소장 이정태 박사)

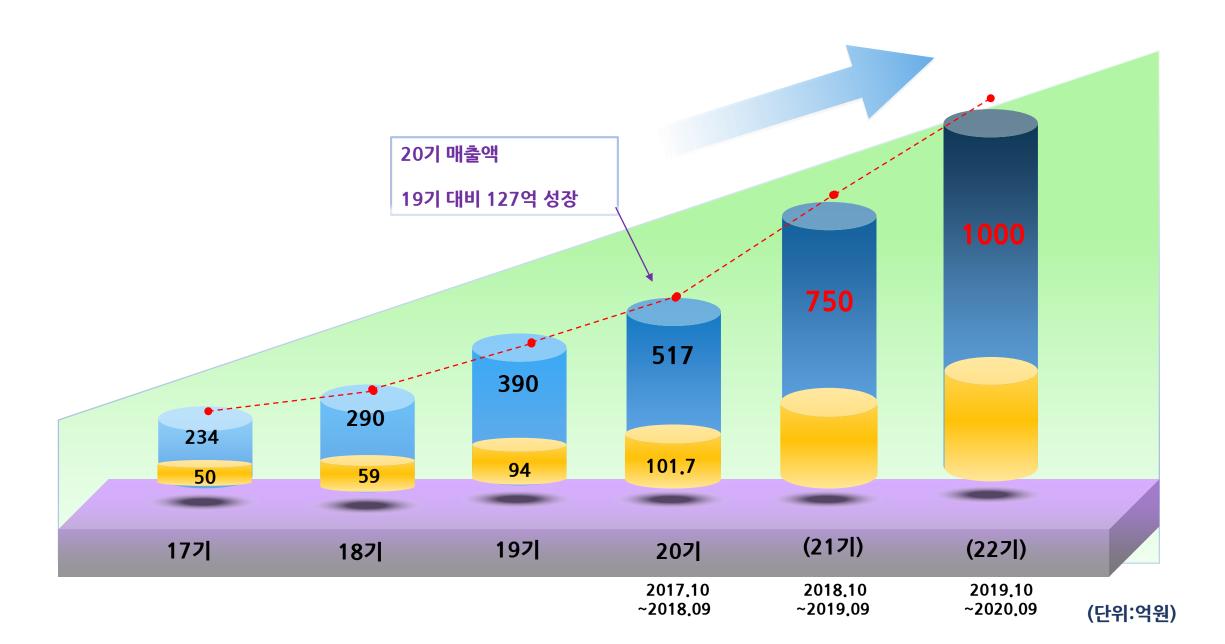
기업부설 연구소


연구개발 벤처기업

[매출 증가 추이]

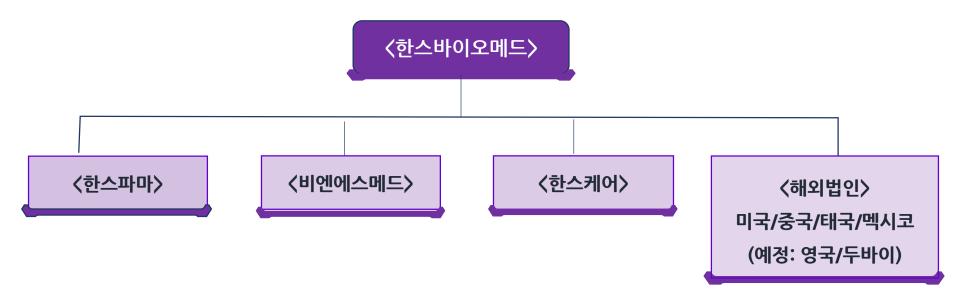
BNS Med 67

기간	Micro	Micro외	Mint	Bellacell	Etc.	계
2015.10-2016.09 3기(18기)		1,593(49%)	1,192(37%)		448(14%)	3,233(100%)
2016.10-2017.09 4기(19기)	377(10%)	2,028(53%)	1,032(27%)		362(10%)	3,800(100%)
2017.10-2018.09 5기(20기)	6,572(70%)	715(8%)	1,560(17%)	12(0%)	481(5%)	9,340(100%)
2018.10-2019.09 6기(21기)	9,765(67%)	733(5%)	2,400(17%)	950(7%)	652(4%)	14,500(100%)


Business Roadmap

- ▼ 출범1기는 구축기로써 우수한 제품군을 시장에 선보이고, 지속가능경영 시스템을 공고히 하기 위해 노력해야 되는 한해라고 할 수 있음.
- ▼ 2020년 시<mark>장형성기</mark>에는 체계적인 운영 시스템을 기반으로 제품의 홍보 및 브랜딩을 통해 Market-share를 확보, 매출 기반을 다지는 해로 삼아야 함.
- ▼ 고도화 단계에는 새롭게 개발한 R&D 제품을 시장에 성공적으로 런칭하여 시장을 선도하는 한스바이오메드 그룹으로 나아가야 함.

한스그룹 매출액 및 향후 2년 예상 매출액


임직원 및 계열사 현황

▶ 임직원 수의 변화

▶ 국내계열사 및 해외법인 현황

"미래를 준비하는 기업"

R&D부문 발표

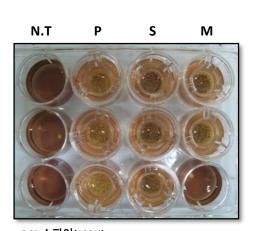
한스바이오메드㈜

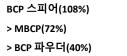
대전조직공학 연구소

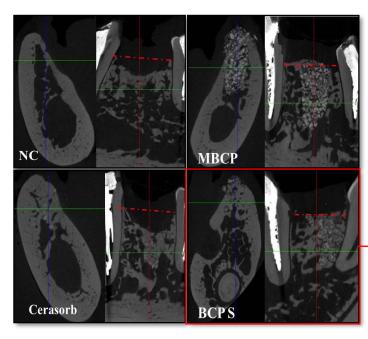
OS/NS 개발/개선 예상제품

- 1. 합성뼈 제품
- 2. 줄기세포 함유 뼈 이식재
- 3. 섬유형 뼈이식재
- 4. 골시멘트

성형분야 개발/개선 예상제품


- 1. 재건용 물방울형 인공유방제품
- 2. Breast funnel
- 3. 식염수 사이저
- 4. 액스펜더
- 5. 실리콘 코성형보형물 BellaSil





줄기세포 함유 뼈이식재

AlloStem® (By AlloSource)

Adipose-derived mesenchymal stem cells combined with allograft bone for bone grafting

ViBone® Viable Bone Matrix

(By Aziyo Biologics, distributed by RTI Surgical, Inc.)

Processed using a proprietary method designed to protect and preserve the health of native bone cells

Osteogenic

Contains the factors and cells needed for bone formation.

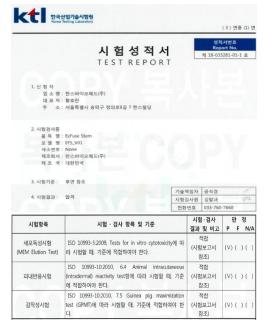

Osteoinductive

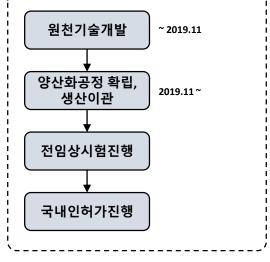
Contains endogeneous bone growth factors, including BMPs to recruit cells and signal bone formation.

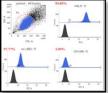
Osteoconductive

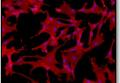
Contains a three-dimensional scaffold ideally suited for bone formation.

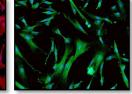
탯줄유래 줄기세포 사용


- 다른 조직으로의 분화능이 뛰어남
- 다른 유래 줄기세포보다 분열능력이 뛰어남
- 미분화된 세포 상태가 다량 함유





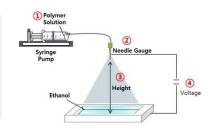

줄기세포치료제



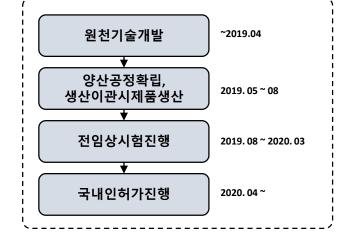
인체 탯줄 유래 줄기세포 특성 및 안전성 확인

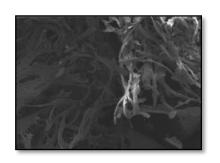
섬유형 골이식재

Polymer fiber


컨셉: Osteoinduction(DBM) + Scaffold (Nanofiber)

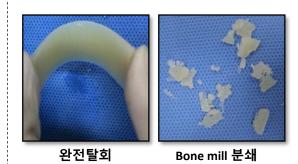
특장점 :

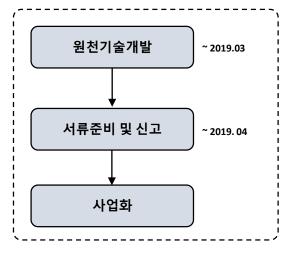

- ① 점성이 있어 주입 또는 molding 가능
- ② 기존 DBM에 osteoconduction 기능 첨가
- ③ 분해기간 동안 (3~6개월) 조골세포가 자랄 수 있는 scaffold 제공



DBM fiber

특장점 :

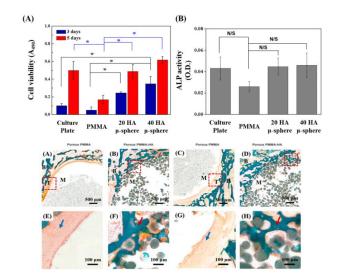

- ① DBM fiber만으로는 인체조직 제품
- ② 섬유들이 엉켜있는 상태 → 골 형성 관련 세포 부착률이 높음
- ③ 캐리어 없이 뭉쳐짐 → 사용의 편의성이 높음



개발과정

PMMA계열 본시멘트 제품

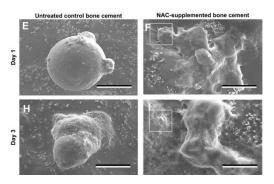
발열 온도가 낮은 PMMA

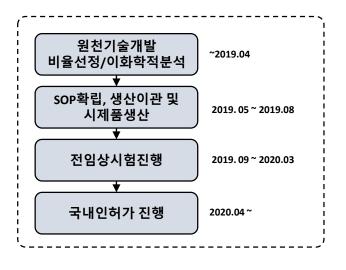

컨셉 : PMMA 시멘트의 최대 문제점인 발열 온도를 낮춤으로써, 이식부위에 신경 혹은 조직이 손상 되는 문제점을 해결

예상조합

1. PMMA + HAp

[특·장점]


- 발열온도 조절을 통해 경화 시 낮은 발열 온도
- BaSO4를 함유한 기존 PMMA 보다 높은 방사선 불투과성
- 높은 생체 적합성
- PMMA 시멘트에 골전도성 기능 부여 (고정 된 HA 입자는 골형성 지지)
- 높은 기계적 특성 유지



2. 기타 항생제나 시약 첨가 : N-Acetylcysteine 등

골시멘트 중합중 발생하는 자유기는 산화 스트레스와 직접적인 세포독성을 야기, NAC는 자신의 티올기의 수소원자를 이용하여 자유기를 중성화시켜 중화 시 발생하는 온도는 낮추고 세포독성을

감소시킴

한스바이오메드㈜

첨단신의료기기 연구센터

 1

 지혈제

 2

 혈관중재술

미용성형

4 정부과제

- 지혈제
 - Patch, Glue
- 골지혈제
- 혈관지혈장치

- 색전코일
 - Pushable coil
 - Braided coil
- 색전비드

● 비흡수성 리프팅실

- 접착소재 개발(산자부)
- 세포 유래 ECM 패치 개발(보복부)
- 색전물질 개발(연구재단)

첨단 의료기기 2019 목표

4개 제품의 품목허가 신청

분류	항목	선행기술취합/ 신규연구기획	기초연구 (재료조건설정)	응용연구 (조건검토)	최적화연구 (조건확정)	대량생산연구 (조건조정)	공인시험성적 (특성분석)	전임상/임상 (성능평가)	기술문서/ 인허가문서	품목허가 신청
국책 과제	[산자부] 혈관지혈장치									
	[복지부] ECM패치									
	[연구재단] 색전입자									
내부 과제 .	골지혈제(Stypos 개선)									2019년
	지혈제									2019년
	혈관지혈장치									2020년
	비흡수성 리프팅실 (실리콘/PET.)									2019년
	혈관 색전코일									2019년

내부과제의 국책과제화: 해당 분야 전문가와의 공동연구 및 적극적인 참여 유도

신기술&신소재개발 과제 참여 : 연구센터의 연구역량 강화

글로벌 바이오기업, 한스바이오메드 Global leader of Bio Engineering, HansBiomed Corp. www.HansBiomed.com

한스바이오메드㈜

세포치료제 연구센터 (줄기세포/ 유전자 치료제/ 재생의학)

20기 세포치료제 연구센터 성과 요약

제 817호 제중원 133주년 www.iseverance.com 2018년 10월 8일(월요일)

연세의료윈소식

YONSEI UNIVERSITY HEALTH SYSTEM NEWS

· 항간 1981년 9월 14일 · 발행인: 윤도홈 · 편집인: 하종원 / 대표전화: (02)2228-1075~6 / FAX: (02)393-7681 / E-mail: severance@yuhs.a

중추신경계 질환 치료용 조성물 기술 이전

의료원-한스바이오메드(주), 세브란스 기술설명회 성과

의료원과 한스바이오메드(주)가 지난달 12일 종합관 6층 교수회의 싫에서 의대 박국인 교수산가과택 의 '중추신경제 질환 치료용 조성 될 기술'과 관면한 기술이전 체결 식을 진행했다.

기술이전 대상인 '중추신경제 집 한 치료용 조성물'은 저산소성-해 멸성 뇌순상 및 착수순상 치료를 목 적으로 인간신경 즐기세포를 기반 으로 한 세포-유전자 복합치료법 읍 개발한 것이다.

이를 통해 임상에 적용 가능한 세 포-유전자 치료제의 차별화 연구 를 통해 우위를 선절해 나갈 것으로 기대된다. 나아가 난치성 집환 치료 제 개발을 통한 부가가치 광출과 사 회적 비용의 절감도 기대된다.

특히, 이번 기술이전은 그동안 의료원이 계속해서 진행해 왔던 세브만스 기술설명회를 통해 수요 기업을 발급했으며, 우수기술에 대해 작극적인 마케팅을 펼쳐 기 속 이제됐다.

제외에 따라 한스바이오메드㈜ 제포치료제 연구센터와 박국인 교 수 연구됨은 세포 -유전자 복합치 료제에 대한 광동연구를 진행한다. 전임상 시험은 의료원에서, 임상 승인 및 임상 시험 진행, 러가 및 승 인, 상업화 추진은 한스바이오메드

㈜에서 담당할 계획이다. 한편, 기술이전 체결식에는 윤도 홈 의료원장, 장인수 의대한당, 남궁 기 사무처장, 박은철 의료원 산학핵 범단장, 기술이전 책임자인 박국인 교수, 공동 기술이전 책임자인 공과 대학 장재형 교수와 한스바이오메 드㈜ 환호찬 대표이사 회장, 김근 영 부회장, 이남현 사장, 박유미 수 석연구원 등 20여 명이 참석했다.

운도를 의료원장은 "임상에서의 아이다이와 경험 그리고 끊임없는 연구를 향한 노력이 실제 특성도 이 어지고, 이것이 다시 기술 이전되어 의료산업화되면 결국 아픈 환자들 에게 큰 도움이 될 것"이라며 "구뢰 적인 결과들이 나올 때까지 의료원 도 옆에서 많은 도움을 주겠다"라 고 반했다.

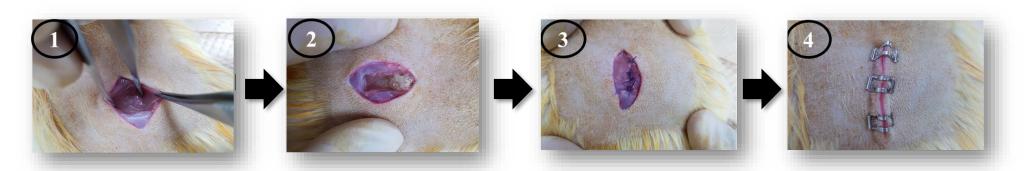
- 당뇨병 세포치료제 국책과제 선정 (2018.6)
- 우리기쁜 산부인과 탯줄 기증 협약식 체결 (2018.07)
- 연세의료원 기술이전 체결 (2018.09)
- 유전자 치료제 GMP 제조소 설립 시작 (2018.09)

- Development of Functional Cosmetics
- Development of ExFuse-Stem
- Development of SureDerm Plus-Stem
- Stem Cell Therapy for Diabetes
- Genesis of Mesenchymal Stem Cell from Umbilical Cord
- Gene Therapy for Diabetes
- Development of DDS
- Gene Therapy for neonatal Hypoxic-Ischemic brain injury
- Gene Therapy for Spinal Cord Injury
- Therapeutic Approaches using NK cells
- Therapeutic Approaches using Cells to Companion Animals

I. Development of Functional Cosmetics

- 국책 과제 진행 중.
- 탯줄 유래 중간엽줄기세포 (hUC-MSCs)로부터 수득한 다양한 조건의 Conditioned Media를 이용하여, 줄기세포 성장인자를 함유한 기능성 화장품의 제조 및 유통기한 설정 시험을 진행 중.
- 유효성 검사 및 다양한 실험을 통해 최적화한 조건인, "줄기세포배양액 60%를 함유"한 스킨 상태의 기능성 화장품에 대한 유통기한 설정을 의뢰하여 시험을 시작함.
- 제조가 완료된 화장품의 초기 미생물학적 시험(대장균, 세균수)을 우선 분석하여 그 결과를 전문 분석 업체로부터 매달 전달 받고 있음.

II. Development of ExFuse-Stem


- 국책 과제 진행중.
- 기존의 "ExFuse" 제품에 줄기세포의 성장인자를 함유해 골 재생 촉진을 극대화한 제품을 개발 준비중.
- 뼈가 없는 근육부위에 "ExFuse-Stem"을 이식하여 신생골 형성평가를 하기위해 등 부위에 이식을 진행함.
- "ExFuse-Stem"에 대한 안전성 평가를 진행중.

Exfuse-Stem

유효성 및 안전성 시험을 위한 ExFuse-Stem 샘플 제조 과정

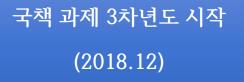
ExFuse-Stem의 효능평가

Exfuse-Stem

국책 과제 2차년도 완료 (2018.11.30)

뼈 이식재 ExFuse-Stem 개발품 검증 완료 (2019.6)

성장인자 함유 이식재 : 안전성 평가 완료


성장인자 함유 이식재 : 유효성 평가 (신생골 형성 확인)

III. Development of SureDerm PlusStem

- 국책 과제 진행중.
- 중간엽줄기세포(MSCs)를 매개하여 기존의 "SureDerm Plus" 제품의 재생 및 수복 기능을 향상시킨 신제품 개발을 위한 예비 실험을 준비중.
- In vitro 실험을 준비하고 있으며, in vivo 실험을 통해 안전성과 유효성을 확인하고자 함.
- In vivo 실험을 위한 업체들의 후보군을 선정하고 있음.

SureDerm Plus-Stem

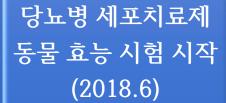
국책 과제 3차년도 개발 완료 (2019.11.30)

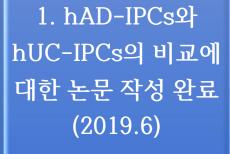
국내 최초 살아있는 중간엽 줄기세포 함유 피부 이식재 개발품 검증 완료 (2019.12)

중간엽줄기세포 함유 이식재 : in vitro & in vivo 실험

중간엽줄기세포 함유 이식재 : 유효성 및 안전성 평가 완료

IV. Stem Cell Therapy for Diabetes (1)


- 국책과제 진행 중.
- 지방 유래 중간엽줄기세포 (hAD-MSCs)를 인슐린 생성 세포 (IPCs)로 직접교차분화 시킨 후, 췌장 β세포의 특성과 기능여부를 *in vitro* 실험을 통해 확인하고자 함.
- Human AD-MSCs와 Human UC-MSCs의 조직 별 직접교차분화 차이점을 확인함.
- 성숙한 IPCs에서 발현하는 다양한 mRNA marker가 hUC-IPCs보다 낮게 발현하고, 형태학적으로도 다른 것을 확인함.


IV. Stem Cell Therapy for Diabetes (2)

- 국책과제 진행 중.
- 당뇨병 세포치료제에 대한 효능 평가를 확인하기 위해 당뇨병을 유도한 동물에 이식해준 IPCs의 생존율 및 효능 확인을 목표로 함.
- 이를 통해 이식한 IPCs를 추적하는 방법 (Cell Tracking Method)을 확립하고자 함.
- 세포 추적을 통해 hUC-MSCs의 IPCs로 분화 후 장기간 기능 유지를 확인함.

Stem Cell Therapy

2. 당뇨병 동물에서의 hUC-IPCs의 효과 논문 작성 완료(2019.11)

전임상 시험 진행 (2019.12)

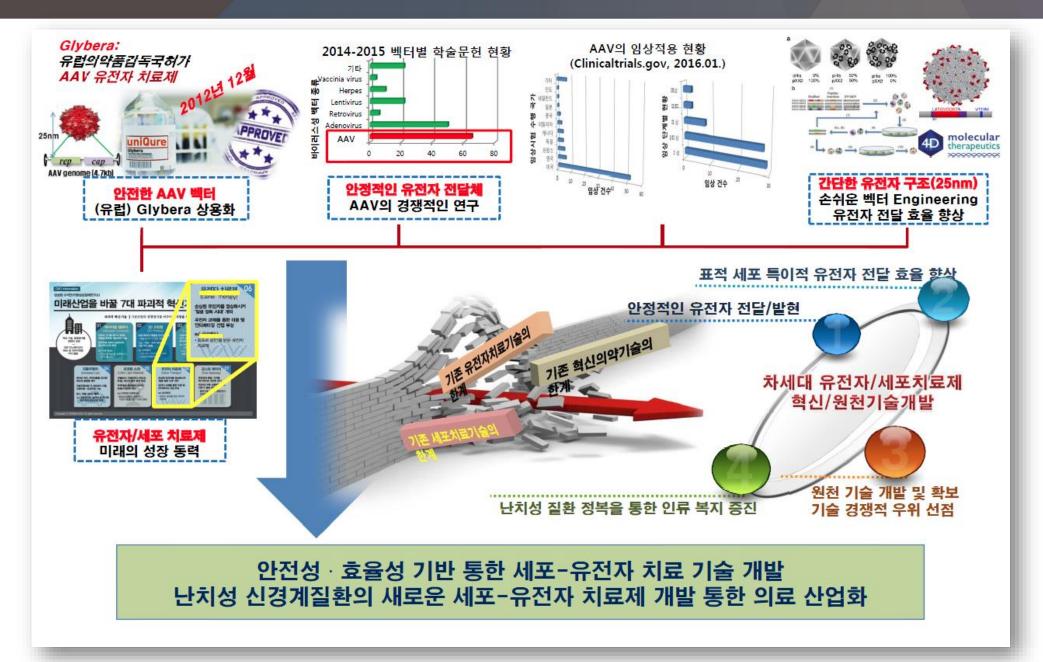
V. Genesis of Mesenchymal Stem Cell from Umbilical Cord

- 우리기쁜 산부인과로부터 탯줄을 제공받아 hUC-MSCs 분리 연구를 진행할 예정임.
- 공용 IRB인 e-IRB System에 해당 연구계획서를 제출하여 심의중.
- IRB 심의 완료 후, 탯줄 기증을 받아서 hUC-MSCs를 분리하여 hUC-IPCs로 분화 시켜 다양한 실험에 사용할 예정임 (Stem Cell Banking 구축).

VI. Gene Therapy for Diabetes

- Gene Y의 과발현을 유도하여 새로운 당뇨병 유전자 치료 방법인 줄기세포 매개 당뇨병 유전자치료제 (Gene Therapy)를 개발하고자 함.
- Gene Y 유전자 서열을 AAV-CMV Vector에 삽입하여 Recombinant plasmid DNA를 제작하여 HEK293T 세포로 유전자를 전달함.
- AAV Particle을 대량 얻기 위한 프로토콜을 확립함.
- In vitro 효능 실험 중.

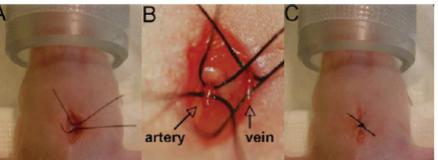
Gene Therapy



IX. Gene Therapy for CNS disease

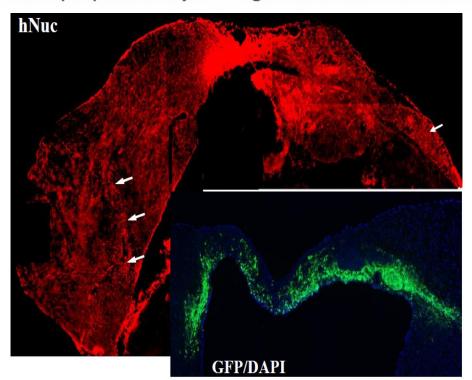
- 신촌 세브란스병원 연구팀과 진행하는 기술이전을 체결하고 프로젝트를 진행 중.
- 연구팀이 가지고있는 신경줄기세포를 이용하여 중추 또는 말초신경계 질환 및 손상에 대한 유전자 치료제 개발을 완성하고자 함.
- IL-10은 면역반응을 조절하거나 종식 시키는데 매우 중요한 기능을 하는 수용성 Cytokine임.
- 기존의 NSCs를 이용하여 IL-10유전자를 발현하는 신경줄기세포를 도입하여 중추신경계 질환 또는 손상의 치료용 유전자 치료제를 개발을 목표로 함.
- 전임상 시험을 거의 완료하였으며, IND filing을 준비하여 임상 시험을 진행할 예정임.

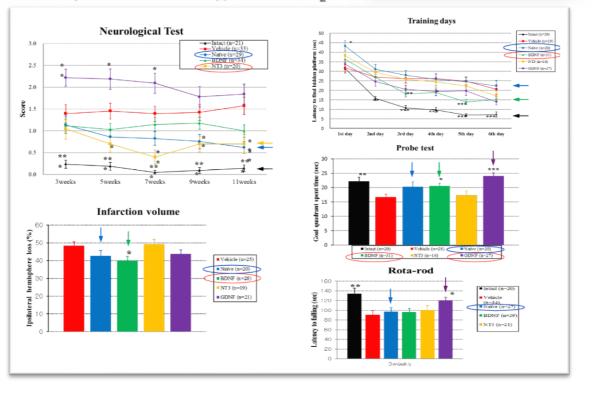
유전자 치료 도입 필요성 및 AAV 장점





동물 실험 결과





CD1 Pup at postnatal day 7

Ligation of unilateral common carotid artery & suture

Hypoxia at 8% O₂

Gene Therapy

임상 프로토콜 완성,

바이오 의약품 GMP 제조소 승인,

IND 승인

(2019.5)

임상 1상 시작 (2019.6)

줄기세포/재생의학 2019년도 목표

<21기 목표 Plan>

	R&D	전임상	IND	임상 1상
기능성 화장품 (2019년 상품화 가능)				
ExFuse-Stem (2019.6 전임상 완료)				
SureDerm Plus-Stem (2019.12 전임상 완료)				
줄기세포 매개 당뇨병 치료제 (2019년 전임상 시작)				
유전자 매개 당뇨병 치료제 (2019년 전임상 시작)				
태아 저산소성 허혈성 뇌손상 치료제 (2019년 임상 시작)				
척수 손상 치료제 (2019년 임상 시작)				
NK 세포 매개 세포치료제 (2019년 R&D 종료)				
동물용 세포치료제 (2019년 R&D 종료)				

Thank You

감사합니다.